organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2′-Aceto­naphthone

aDepartment of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada T1K3M4
*Correspondence e-mail: boere@uleth.ca

(Received 15 September 2012; accepted 17 September 2012; online 13 October 2012)

In the structure of the title compound [systematic name: 1-(naphthalen-2-yl)ethanone], C12H10O, the acetyl group is approximately coplanar with the naphthalene ring with a Car—Car—C=O torsion angle of 5.8 (2)°. In the crystal, the mol­ecules are packed in a classic herringbone arrangement typical for aromatic polycycles such as penta­cene. They are also linked by weak end-to-end C—H⋯O interactions along the ac diagonal.

Related literature

For synthesis details, see: Bassilios & Salem (1952[Bassilios, H. F. & Salem, A. Y. (1952). Bull. Soc. Chim. Fr. pp. 586-592.]). For related structures, see: Kemperman et al. (2000[Kemperman, G. J., de Gelder, R., Dommerholt, F. J., Raemakers-Franken, P. C., Klunder, A. J. H. & Zwanenburg, B. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 1425-1429.]); Mattheus et al. (2001[Mattheus, C. C., Dros, A. B., Baas, J., Meetsma, A., Boer, J. L. de & Palstra, T. T. M. (2001). Acta Cryst. C57, 939-941.]); Miyake et al. (1998[Miyake, Y., Hirose, J., Hasegawa, Y., Sada, K. & Miyata, M. (1998). Chem. Commun. pp. 111-112.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10O

  • Mr = 170.20

  • Monoclinic, P 21 /n

  • a = 5.9875 (5) Å

  • b = 7.4025 (7) Å

  • c = 20.2778 (18) Å

  • β = 93.747 (1)°

  • V = 896.84 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.3 × 0.25 × 0.2 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]) Tmin = 0.701, Tmax = 0.746

  • 12546 measured reflections

  • 2089 independent reflections

  • 1840 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.118

  • S = 1.08

  • 2089 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.95 2.65 3.324 (1) 129
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

2'-Acetonaphthone, (I), is an important example of an aromatic ketone that can be prepared by a classical Friedel-Crafts acylation reaction (Bassilios & Salem, 1952) and is commercially available from many suppliers. A search of the Cambridge Structural Database (Allen, 2002; WebCSD August 2012) returned only two previous crystal structures for (I), in both of which this molecule functions as a guest within an organic host framework. In the structure reported by Kemperman et al. (2000; refcode MEGXUR), (I) is found as a disordered inclusion compound along with four water molecules in a clathrate formed by two cephradine molecules. The cages formed by this cephalosporin antibiotic were shown to be quite flexible and fit guests of differing size, in part by also incorporating varying numbers of hydrogen-bonded water molecules. This adaptability of the host lattice has been described as permitting "induced fitting" of guest molecule(s). The cephradine host molecules fully surround their guests and keep individual molecules of (I) separated by the b axis distance of 7.1965 (3) Å. In the second example (refcode: NECPUG), (I) forms into π-stacks which fill channels that run along the c axis of a lattice formed from the modified bile acid derivative 3-epiursodeoxycholic acid (Miyake et al., 1998). The average separation of molecules of (I) along these channels is 3.51 Å, just 0.1 Å greater than the sums of the van der Waals radii of two carbon atoms. Both of these structures for (I) have very poor precision in the interatomic distances with mean s.u. of 0.01 Å.

We have therefore determined the crystal structure at 173 K of pure (I). Fig. 1 displays the molecular structure as found in the crystal lattice. The acetyl group is approximately co-planar with the naphthalene ring and the carbonyl oxygen is anti to the ring with the torsion angle C1-C2-C11-O1 174.8 (1)°. By comparison, in NECPUG the oxygen atom is in the syn position. The disorder in MEGXUR precludes a definitive conformational assignment, but the major component appears to have the oxygen anti as in (I). It is instructive to compare the bond distances determined for pure (I) with those determined in the host lattices. The high-accuracy structure reported here may also be used to define rigid templates as an aid in refining future inclusion compounds of (I).

In contrast to the host–guest complexes MEGXUR, which has isolated molecules of (I), and NECPUG with π-stacked (I), the crystal packing of pure (I) is of the herringbone 2-D edge-to-face type (Figure 2). This arrangement of crystal packing is reminiscent to that found in pentacene as determined at 90 K (Mattheus et al., 2001). Unlike pentacene, molecules of (I) are also linked by weak end-to-end by C8-H8···O1 intermolecular interactions (Table 1).

Related literature top

For synthesis details, see: Bassilios & Salem (1952). For related structures, see: Kemperman et al. (2000); Mattheus et al. (2001); Miyake et al. (1998). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

A sample of (I) was prepared by the method of Bassilios and Salem (1952).

Refinement top

Hydrogen atoms attached to carbon were treated as riding, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl and C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) drawn with displacement elipsoids at the 50% probability level and showing the atom numbering scheme.
[Figure 2] Fig. 2. An extended packing diagram viewed down the c* direction, showing the "herringbone" edge-to-face packing arrangements. Only atoms involved in short contacts to neighbouring atoms are labelled [Sym. codes: (i) -x + 3/2, y + 1/2, -z + 1/2; (ii) -x + 3/2, y - 1/2, -z + 1/2; (iii) -x + 1/2, y - 1/2, -z + 1/2; (iv) -x + 1/2, y + 1/2, -z + 1/2]. The O1···H8—C8 H-bonds are not shown but are oriented along the ac diagonal (approximately perpendicular to the page).
1-(Naphthalen-2-yl)ethanone top
Crystal data top
C12H10OF(000) = 360
Mr = 170.20Dx = 1.261 Mg m3
Monoclinic, P21/nMelting point: 326.7 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 5.9875 (5) ÅCell parameters from 7818 reflections
b = 7.4025 (7) Åθ = 2.8–27.6°
c = 20.2778 (18) ŵ = 0.08 mm1
β = 93.747 (1)°T = 173 K
V = 896.84 (14) Å3Block, colourless
Z = 40.3 × 0.25 × 0.2 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2089 independent reflections
Radiation source: fine-focus sealed tube, Bruker D81840 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 66.06 pixels mm-1θmax = 27.6°, θmin = 2.0°
ϕ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 99
Tmin = 0.701, Tmax = 0.746l = 2626
12546 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0634P)2 + 0.1624P]
where P = (Fo2 + 2Fc2)/3
2089 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C12H10OV = 896.84 (14) Å3
Mr = 170.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.9875 (5) ŵ = 0.08 mm1
b = 7.4025 (7) ÅT = 173 K
c = 20.2778 (18) Å0.3 × 0.25 × 0.2 mm
β = 93.747 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2089 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1840 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.746Rint = 0.019
12546 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.08Δρmax = 0.25 e Å3
2089 reflectionsΔρmin = 0.23 e Å3
119 parameters
Special details top

Experimental. A crystal coated in Paratone (TM) oil was mounted on the end of a thin glass capillary and cooled in the gas stream of the diffractometer Kryoflex device.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29572 (15)0.31555 (14)0.00905 (4)0.0539 (3)
C10.60105 (15)0.27553 (12)0.14913 (4)0.0256 (2)
H10.73480.22200.13560.031*
C20.43438 (16)0.32203 (13)0.10228 (4)0.0274 (2)
C30.23586 (16)0.40517 (13)0.12238 (5)0.0301 (2)
H30.12140.43890.09010.036*
C40.20800 (15)0.43702 (13)0.18753 (5)0.0284 (2)
H40.07450.49310.20010.034*
C50.37603 (15)0.38738 (12)0.23698 (4)0.0246 (2)
C60.35241 (17)0.41832 (13)0.30521 (5)0.0298 (2)
H60.21990.47310.31910.036*
C70.51965 (17)0.36962 (14)0.35120 (5)0.0330 (2)
H70.50160.39060.39680.040*
C80.71788 (17)0.28884 (14)0.33168 (5)0.0325 (2)
H80.83220.25540.36410.039*
C90.74625 (15)0.25840 (13)0.26613 (5)0.0280 (2)
H90.88090.20480.25330.034*
C100.57636 (15)0.30626 (12)0.21724 (4)0.0237 (2)
C110.45374 (18)0.28604 (15)0.03043 (5)0.0351 (3)
C120.6697 (2)0.21278 (19)0.00735 (5)0.0450 (3)
H12A0.65510.19550.04070.067*
H12B0.70350.09670.02900.067*
H12C0.79100.29840.01870.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0509 (5)0.0794 (7)0.0299 (4)0.0071 (5)0.0076 (4)0.0073 (4)
C10.0253 (4)0.0241 (4)0.0279 (5)0.0005 (3)0.0048 (3)0.0005 (3)
C20.0296 (5)0.0268 (5)0.0257 (5)0.0027 (4)0.0024 (4)0.0000 (3)
C30.0264 (5)0.0310 (5)0.0323 (5)0.0004 (4)0.0022 (4)0.0037 (4)
C40.0238 (4)0.0264 (5)0.0355 (5)0.0024 (3)0.0041 (4)0.0015 (4)
C50.0246 (4)0.0206 (4)0.0291 (5)0.0024 (3)0.0050 (3)0.0001 (3)
C60.0311 (5)0.0280 (5)0.0313 (5)0.0035 (4)0.0090 (4)0.0030 (4)
C70.0386 (5)0.0357 (5)0.0254 (4)0.0101 (4)0.0062 (4)0.0031 (4)
C80.0319 (5)0.0355 (5)0.0293 (5)0.0068 (4)0.0035 (4)0.0047 (4)
C90.0250 (4)0.0277 (5)0.0312 (5)0.0004 (3)0.0013 (4)0.0032 (4)
C100.0237 (4)0.0207 (4)0.0268 (4)0.0017 (3)0.0027 (3)0.0014 (3)
C110.0404 (6)0.0376 (6)0.0270 (5)0.0032 (4)0.0007 (4)0.0017 (4)
C120.0473 (6)0.0594 (8)0.0290 (5)0.0020 (5)0.0086 (4)0.0075 (5)
Geometric parameters (Å, º) top
O1—C111.2185 (13)C6—C71.3712 (14)
C1—C21.3759 (13)C6—H60.9500
C1—C101.4169 (12)C7—C81.4086 (15)
C1—H10.9500C7—H70.9500
C2—C31.4216 (13)C8—C91.3697 (14)
C2—C111.4931 (13)C8—H80.9500
C3—C41.3629 (14)C9—C101.4181 (12)
C3—H30.9500C9—H90.9500
C4—C51.4215 (13)C11—C121.5046 (16)
C4—H40.9500C12—H12A0.9800
C5—C61.4186 (13)C12—H12B0.9800
C5—C101.4220 (12)C12—H12C0.9800
C2—C1—C10121.04 (8)C8—C7—H7119.6
C2—C1—H1119.5C9—C8—C7120.18 (9)
C10—C1—H1119.5C9—C8—H8119.9
C1—C2—C3119.51 (8)C7—C8—H8119.9
C1—C2—C11122.01 (9)C8—C9—C10120.56 (9)
C3—C2—C11118.47 (9)C8—C9—H9119.7
C4—C3—C2120.69 (8)C10—C9—H9119.7
C4—C3—H3119.7C1—C10—C9121.70 (8)
C2—C3—H3119.7C1—C10—C5119.06 (8)
C3—C4—C5120.88 (8)C9—C10—C5119.24 (8)
C3—C4—H4119.6O1—C11—C2120.18 (10)
C5—C4—H4119.6O1—C11—C12120.42 (10)
C6—C5—C4122.35 (8)C2—C11—C12119.40 (9)
C6—C5—C10118.84 (8)C11—C12—H12A109.5
C4—C5—C10118.80 (8)C11—C12—H12B109.5
C7—C6—C5120.39 (9)H12A—C12—H12B109.5
C7—C6—H6119.8C11—C12—H12C109.5
C5—C6—H6119.8H12A—C12—H12C109.5
C6—C7—C8120.78 (9)H12B—C12—H12C109.5
C6—C7—H7119.6
C10—C1—C2—C31.13 (14)C2—C1—C10—C9179.74 (8)
C10—C1—C2—C11178.17 (8)C2—C1—C10—C50.33 (14)
C1—C2—C3—C40.85 (14)C8—C9—C10—C1179.72 (8)
C11—C2—C3—C4178.47 (9)C8—C9—C10—C50.34 (14)
C2—C3—C4—C50.25 (15)C6—C5—C10—C1179.82 (8)
C3—C4—C5—C6179.92 (9)C4—C5—C10—C10.75 (13)
C3—C4—C5—C101.04 (14)C6—C5—C10—C90.11 (13)
C4—C5—C6—C7179.44 (8)C4—C5—C10—C9179.19 (8)
C10—C5—C6—C70.40 (14)C1—C2—C11—O1174.03 (10)
C5—C6—C7—C80.25 (15)C3—C2—C11—O15.28 (16)
C6—C7—C8—C90.22 (15)C1—C2—C11—C125.85 (16)
C7—C8—C9—C100.51 (15)C3—C2—C11—C12174.85 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.952.653.324 (1)129
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H10O
Mr170.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)5.9875 (5), 7.4025 (7), 20.2778 (18)
β (°) 93.747 (1)
V3)896.84 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.3 × 0.25 × 0.2
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.701, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
12546, 2089, 1840
Rint0.019
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.118, 1.08
No. of reflections2089
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.952.6483.324 (1)128.5
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged for a Discovery Grant. The diffractometer was purchased with the help of NSERC and the University of Lethbridge.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBassilios, H. F. & Salem, A. Y. (1952). Bull. Soc. Chim. Fr. pp. 586–592.  Google Scholar
First citationBruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationKemperman, G. J., de Gelder, R., Dommerholt, F. J., Raemakers-Franken, P. C., Klunder, A. J. H. & Zwanenburg, B. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 1425–1429.  CSD CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMattheus, C. C., Dros, A. B., Baas, J., Meetsma, A., Boer, J. L. de & Palstra, T. T. M. (2001). Acta Cryst. C57, 939–941.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMiyake, Y., Hirose, J., Hasegawa, Y., Sada, K. & Miyata, M. (1998). Chem. Commun. pp. 111–112.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds