organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3140-o3141

2-(1H-Indol-3-yl)acetohydrazide

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, bInterdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000, Pakistan, and cDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: iuklodhi@yahoo.com

(Received 24 September 2012; accepted 5 October 2012; online 20 October 2012)

In the title compound C10H11N3O, the mean plane of the indole ring system (r.m.s. deviation 0.0131 Å) subtends a dihedral angle of 87.27 (5)° to the almost planar acetohydrazide substituent (r.m.s. deviation 0.0291 Å). In the crystal, bifurcated N—H⋯(O,N) and N—H⋯N hydrogen bonds involving the pyrrole N–H grouping combine to form zigzag chains along a. Additional N—H⋯O contacts from the hydrazide N–H group augmented by C—H⋯π inter­actions link the mol­ecules into chains along the a axis. The overall effect of these contacts is a three-dimensional network structure with mol­ecules stacked along the b-axis direction.

Related literature

For the use of hydrazides in the synthesis of heterocyclic compounds, see: Narayana et al. (2005a[Narayana, B., Ashalatha, B. V., Vijayaraj, K. K., Fernandes, J. & Sarojini, B. K. (2005a). Bioorg. Med. Chem. 13, 4638-4644.],b[Narayana, B., Vijayaraj, K. K., Ashalatha, B. V. & Suchetha Kumari, N. (2005b). Pharmazie, 338, 373-377.]) and in the production of pharmaceuticals, see: Liu et al. (2006[Liu, F., Stephen, A. G., Adainson, C. S., Gousset, K., Aman, M. J., Freed, E. O., Fisher, R. J. & Burke, T. R. Jr (2006). Org. Lett. 8, 5165-5168.]). For related structures, see: Butcher et al. (2007[Butcher, R. J., Jasinski, J. P., Narayana, B., Sunil, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3652.]); Hou (2009[Hou, J.-L. (2009). Acta Cryst. E65, o851.]); Li & Ban (2009[Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o883.]); Sarojini et al. (2007a[Sarojini, B. K., Yathirajan, H. S., Sunil, K., Narayana, B. & Bolte, M. (2007a). Acta Cryst. E63, o3487.],b[Sarojini, B. K., Narayana, B., Sunil, K., Yathirajan, H. S. & Bolte, M. (2007b). Acta Cryst. E63, o3551.],c[Sarojini, B. K., Narayana, B., Sunil, K., Yathirajan, H. S. & Bolte, M. (2007c). Acta Cryst. E63, o3862-o3863.],d[Sarojini, B. K., Mustafa, K., Narayana, B., Yathirajan, H. S. & Bolte, M. (2007d). Acta Cryst. E63, o4419.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11N3O

  • Mr = 189.22

  • Orthorhombic, P b c a

  • a = 12.1599 (7) Å

  • b = 9.6153 (4) Å

  • c = 16.2345 (8) Å

  • V = 1898.16 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.17 × 0.14 × 0.11 mm

Data collection
  • Bruker APEXII CCD area detector diffractometer

  • 8600 measured reflections

  • 2329 independent reflections

  • 1294 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.122

  • S = 1.00

  • 2329 reflections

  • 139 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O10i 0.80 (2) 2.21 (2) 2.927 (2) 149.4 (19)
N1—H1N⋯N3i 0.80 (2) 2.50 (2) 3.126 (2) 136.6 (19)
N2—H2N⋯O10ii 0.89 (2) 2.20 (2) 3.0799 (19) 166.3 (17)
C9—H9ACg2iii 0.97 2.73 3.644 (2) 157
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x, -y-{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Hydrazides are useful precursors in the synthesis of several heterocyclic compounds. (Narayana et al., 2005a,b). They are also intermediates in the production of many pharmaceutically important compounds (Liu et al., 2006). The structures of a number of hydrazides and their derivatives have also been reported (Butcher et al., 2007; Hou, 2009; Li & Ban, 2009; Sarojini et al., 2007a,b,c,d).

In the title hydrazide compound, the indole ring system is planar (r.m.s. deviation 0.0131 Å) and subtends an angle of 87.27 (5)° to the C9, C10, O10, N2, N3 acetohydrazide substituent which is also planar (r.m.s. deviation 0.0291 Å). In the crystal structure, bifurcated N1–H1N···O10 and N1–H1N···N6 hydrogen bonds together form zigzag chains along a, Table 1, Fig 2. Additional N2–H2N···O10 contacts augmented by C9–H9A···π interactions link the molecules into rows along b, Fig 3. The overall effect of these contacts is a three dimensional network structure with molecules stacked along the b axis, Fig 4.

Related literature top

For the use of hydrazides in the synthesis of heterocyclic compounds, see: Narayana et al. (2005a,b) and in the production of pharmaceuticals, see: Liu et al. (2006). For related structures, see: Butcher et al. (2007); Hou (2009); Li & Ban (2009); Sarojini et al. (2007a,b,c,d).

Experimental top

Indole 3-methyl ester (500 mg, 2.6 mmole, 1eq) was added to hydrazine hydrate (80%, 4eq) in ethanol. The reaction mixture was refluxed for 2–3 h, allowed to cool and poured into 100 ml of chilled water. The resulting solid was filtered, dried and re-crystallized from ethanol to obtain the product (300 mg, 60%), mp: 143°C. The purity of the compound was confirmed using thin layer chromatography Rf: 0.18, (n-hexane: ethyl acetate). Crystals of the title compound suitable for X-ray analysis were grown from a solution in ethanol at room temperature.

Refinement top

N bound H atoms were located in difference Fourier maps and their coordinates were refined with Uiso=1.2Ueq (N). All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.93 Å, for aromatic and 0.97 Å for CH2 H atoms with Uiso = 1.2Ueq (C).

Computing details top

Data collection: APEX2 (Bruker 2005); cell refinement: APEX2 and SAINT (Bruker 2005); data reduction: SAINT (Bruker 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip 2010).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atom numbering scheme with displacement ellipsoids drawn at the 50% probability level
[Figure 2] Fig. 2. Zigzag chains along a with hydrogen bonds drawn as dashed lines.
[Figure 3] Fig. 3. Molecules linked into rows along the b by N–H···O hydrogen bonds (dashed lines) and C–H···π contacts (dotted lines).
[Figure 4] Fig. 4. A three dimensional network structure of molecules stacked along the b axis with hydrogen bonds drawn as dashed lines.
2-(1H-Indol-3-yl)acetohydrazide top
Crystal data top
C10H11N3OF(000) = 800
Mr = 189.22Dx = 1.324 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1251 reflections
a = 12.1599 (7) Åθ = 3.0–22.1°
b = 9.6153 (4) ŵ = 0.09 mm1
c = 16.2345 (8) ÅT = 296 K
V = 1898.16 (16) Å3Prism, colorless
Z = 80.17 × 0.14 × 0.11 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
1294 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 28.3°, θmin = 3.0°
ϕ and ω scansh = 1614
8600 measured reflectionsk = 1212
2329 independent reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.1536P]
where P = (Fo2 + 2Fc2)/3
2329 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C10H11N3OV = 1898.16 (16) Å3
Mr = 189.22Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.1599 (7) ŵ = 0.09 mm1
b = 9.6153 (4) ÅT = 296 K
c = 16.2345 (8) Å0.17 × 0.14 × 0.11 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
1294 reflections with I > 2σ(I)
8600 measured reflectionsRint = 0.039
2329 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.16 e Å3
2329 reflectionsΔρmin = 0.16 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.51122 (13)0.27482 (16)0.60889 (11)0.0549 (5)
H1N0.5591 (17)0.321 (2)0.5893 (12)0.066*
C10.45025 (15)0.30809 (17)0.67668 (12)0.0463 (5)
C20.46525 (18)0.4106 (2)0.73576 (14)0.0615 (6)
H20.52510.47070.73350.074*
C30.3892 (2)0.4202 (2)0.79725 (14)0.0683 (6)
H30.39800.48780.83770.082*
C40.29916 (19)0.3318 (2)0.80094 (13)0.0664 (6)
H40.24790.34280.84300.080*
C50.28434 (16)0.22822 (19)0.74347 (12)0.0542 (5)
H50.22420.16870.74660.065*
C60.36154 (14)0.21440 (16)0.68030 (11)0.0418 (4)
C70.37296 (14)0.12255 (16)0.61199 (11)0.0437 (4)
C80.46342 (15)0.16439 (18)0.57039 (12)0.0512 (5)
H80.48940.12350.52220.061*
C90.29943 (16)0.00197 (17)0.59225 (12)0.0526 (5)
H9A0.26000.02430.64180.063*
H9B0.34480.07640.57620.063*
C100.21718 (14)0.02925 (16)0.52500 (11)0.0404 (4)
O100.18296 (11)0.14649 (11)0.50855 (8)0.0575 (4)
N20.18364 (13)0.08386 (15)0.48613 (10)0.0505 (4)
H2N0.2143 (16)0.165 (2)0.4996 (11)0.061*
N30.09921 (17)0.07433 (16)0.42677 (12)0.0631 (5)
H3N10.1226 (17)0.128 (2)0.3824 (13)0.076*
H3N20.0381 (19)0.125 (2)0.4406 (14)0.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0422 (9)0.0513 (10)0.0711 (12)0.0088 (7)0.0042 (9)0.0060 (9)
C10.0431 (10)0.0411 (9)0.0548 (11)0.0031 (7)0.0091 (9)0.0057 (9)
C20.0620 (14)0.0526 (11)0.0699 (15)0.0112 (10)0.0161 (12)0.0005 (10)
C30.0867 (17)0.0570 (13)0.0612 (14)0.0031 (12)0.0161 (13)0.0101 (11)
C40.0741 (15)0.0708 (14)0.0542 (13)0.0138 (12)0.0036 (11)0.0026 (11)
C50.0498 (11)0.0527 (11)0.0600 (12)0.0022 (9)0.0011 (10)0.0136 (10)
C60.0415 (9)0.0341 (8)0.0497 (10)0.0006 (7)0.0065 (8)0.0085 (8)
C70.0442 (10)0.0335 (8)0.0534 (11)0.0010 (7)0.0056 (9)0.0087 (8)
C80.0537 (11)0.0422 (10)0.0577 (12)0.0064 (8)0.0021 (10)0.0009 (9)
C90.0625 (12)0.0328 (9)0.0624 (12)0.0039 (8)0.0095 (10)0.0070 (8)
C100.0444 (10)0.0282 (8)0.0485 (10)0.0012 (7)0.0029 (8)0.0015 (7)
O100.0671 (9)0.0300 (6)0.0752 (9)0.0049 (6)0.0198 (7)0.0020 (6)
N20.0627 (10)0.0292 (8)0.0594 (10)0.0020 (7)0.0114 (9)0.0020 (7)
N30.0782 (13)0.0455 (10)0.0656 (12)0.0004 (8)0.0177 (11)0.0082 (8)
Geometric parameters (Å, º) top
N1—C81.362 (2)C6—C71.425 (2)
N1—C11.365 (3)C7—C81.352 (2)
N1—H1N0.80 (2)C7—C91.499 (2)
C1—C21.387 (3)C8—H80.9300
C1—C61.407 (2)C9—C101.504 (2)
C2—C31.364 (3)C9—H9A0.9700
C2—H20.9300C9—H9B0.9700
C3—C41.388 (3)C10—O101.2310 (18)
C3—H30.9300C10—N21.322 (2)
C4—C51.377 (3)N2—N31.411 (2)
C4—H40.9300N2—H2N0.89 (2)
C5—C61.397 (2)N3—H3N10.93 (2)
C5—H50.9300N3—H3N20.92 (2)
C8—N1—C1108.72 (15)C8—C7—C6106.48 (15)
C8—N1—H1N124.2 (15)C8—C7—C9127.50 (18)
C1—N1—H1N125.9 (15)C6—C7—C9126.01 (16)
N1—C1—C2130.74 (18)C7—C8—N1110.48 (17)
N1—C1—C6107.46 (16)C7—C8—H8124.8
C2—C1—C6121.79 (18)N1—C8—H8124.8
C3—C2—C1117.75 (19)C7—C9—C10114.65 (14)
C3—C2—H2121.1C7—C9—H9A108.6
C1—C2—H2121.1C10—C9—H9A108.6
C2—C3—C4121.66 (19)C7—C9—H9B108.6
C2—C3—H3119.2C10—C9—H9B108.6
C4—C3—H3119.2H9A—C9—H9B107.6
C5—C4—C3121.2 (2)O10—C10—N2123.07 (16)
C5—C4—H4119.4O10—C10—C9122.82 (15)
C3—C4—H4119.4N2—C10—C9114.10 (14)
C4—C5—C6118.58 (18)C10—N2—N3119.81 (15)
C4—C5—H5120.7C10—N2—H2N118.4 (12)
C6—C5—H5120.7N3—N2—H2N121.8 (12)
C5—C6—C1119.03 (17)N2—N3—H3N1105.6 (13)
C5—C6—C7134.12 (16)N2—N3—H3N2112.8 (15)
C1—C6—C7106.84 (16)H3N1—N3—H3N297.9 (18)
C8—N1—C1—C2179.29 (19)C5—C6—C7—C8177.68 (18)
C8—N1—C1—C60.1 (2)C1—C6—C7—C81.15 (18)
N1—C1—C2—C3179.47 (19)C5—C6—C7—C93.4 (3)
C6—C1—C2—C31.5 (3)C1—C6—C7—C9177.72 (16)
C1—C2—C3—C40.5 (3)C6—C7—C8—N11.3 (2)
C2—C3—C4—C51.6 (3)C9—C7—C8—N1177.58 (16)
C3—C4—C5—C60.7 (3)C1—N1—C8—C70.9 (2)
C4—C5—C6—C11.2 (2)C8—C7—C9—C1079.8 (2)
C4—C5—C6—C7179.92 (18)C6—C7—C9—C10101.5 (2)
N1—C1—C6—C5178.42 (15)C7—C9—C10—O1026.0 (3)
C2—C1—C6—C52.3 (3)C7—C9—C10—N2155.06 (17)
N1—C1—C6—C70.62 (18)O10—C10—N2—N34.6 (3)
C2—C1—C6—C7178.61 (16)C9—C10—N2—N3174.30 (17)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10i0.80 (2)2.21 (2)2.927 (2)149.4 (19)
N1—H1N···N3i0.80 (2)2.50 (2)3.126 (2)136.6 (19)
N2—H2N···O10ii0.89 (2)2.20 (2)3.0799 (19)166.3 (17)
C9—H9A···Cg2iii0.972.733.644 (2)157
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y1/2, z; (iii) x, y3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H11N3O
Mr189.22
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)12.1599 (7), 9.6153 (4), 16.2345 (8)
V3)1898.16 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.17 × 0.14 × 0.11
Data collection
DiffractometerBruker APEXII CCD area detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8600, 2329, 1294
Rint0.039
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.122, 1.00
No. of reflections2329
No. of parameters139
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: APEX2 (Bruker 2005), APEX2 and SAINT (Bruker 2005), SAINT (Bruker 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip 2010).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10i0.80 (2)2.21 (2)2.927 (2)149.4 (19)
N1—H1N···N3i0.80 (2)2.50 (2)3.126 (2)136.6 (19)
N2—H2N···O10ii0.89 (2)2.20 (2)3.0799 (19)166.3 (17)
C9—H9A···Cg2iii0.972.733.644 (2)157
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y1/2, z; (iii) x, y3/2, z1/2.
 

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for the purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Jasinski, J. P., Narayana, B., Sunil, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHou, J.-L. (2009). Acta Cryst. E65, o851.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, F., Stephen, A. G., Adainson, C. S., Gousset, K., Aman, M. J., Freed, E. O., Fisher, R. J. & Burke, T. R. Jr (2006). Org. Lett. 8, 5165–5168.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNarayana, B., Ashalatha, B. V., Vijayaraj, K. K., Fernandes, J. & Sarojini, B. K. (2005a). Bioorg. Med. Chem. 13, 4638–4644.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNarayana, B., Vijayaraj, K. K., Ashalatha, B. V. & Suchetha Kumari, N. (2005b). Pharmazie, 338, 373–377.  Web of Science CrossRef CAS Google Scholar
First citationSarojini, B. K., Mustafa, K., Narayana, B., Yathirajan, H. S. & Bolte, M. (2007d). Acta Cryst. E63, o4419.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarojini, B. K., Narayana, B., Sunil, K., Yathirajan, H. S. & Bolte, M. (2007b). Acta Cryst. E63, o3551.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarojini, B. K., Narayana, B., Sunil, K., Yathirajan, H. S. & Bolte, M. (2007c). Acta Cryst. E63, o3862–o3863.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarojini, B. K., Yathirajan, H. S., Sunil, K., Narayana, B. & Bolte, M. (2007a). Acta Cryst. E63, o3487.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3140-o3141
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds