organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3156-o3157

1-[5-Acetyl-2,6-di­methyl-4-(5-phenyl-1H-pyrazol-3-yl)-1,4-di­hydro­pyridin-3-yl]ethanone monohydrate

aNational Institute of Technology-Karnataka, Department of Chemistry, Organic Chemistry Laboratory, Surathkal, Mangalore 575 025, India, bUAS Hebbal, Veterinary College, Department of Microbiology, Bangalore 24, India, and cNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 10 October 2012; accepted 11 October 2012; online 20 October 2012)

In the title compound, C20H21N3O2·H2O, the aza-substitued six-membered ring adopts a L4B conformation. In the crystal, classical N—H⋯O, N—H⋯N and O—H⋯O hydrogen bonds connect the entities into a three-dimensional network. Intra­molecular C—H⋯O contacts are also observed.

Related literature

For the pharmaceutical properties of 1,4-dihydro­pyridine-derived drugs, see: Janis & Triggle (1983[Janis, R. A. & Triggle, D. J. (1983). J. Med. Chem. 26, 775-785.]); Boecker & Guengerich (1986[Boecker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 29, 1596-1603.]); Gordeev et al. (1996[Gordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924-928.]); Buhler & Kiowski (1987[Buhler, F. R. & Kiowski, W. (1987). J. Hypertens. 5, S3-S10.]); Vo et al. (1995[Vo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851-2859.]). For the conformational analysis of puckering factors of five- and six-membered rings, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21N3O2·H2O

  • Mr = 353.41

  • Monoclinic, P 21 /c

  • a = 10.3516 (2) Å

  • b = 12.4352 (3) Å

  • c = 15.4101 (3) Å

  • β = 112.798 (1)°

  • V = 1828.68 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.41 × 0.34 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.984

  • 17882 measured reflections

  • 4559 independent reflections

  • 3849 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.114

  • S = 1.04

  • 4559 reflections

  • 255 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.938 (19) 1.855 (19) 2.7822 (14) 169.1 (16)
N3—H3⋯N1ii 0.878 (17) 2.075 (17) 2.9454 (13) 171.1 (15)
O3—H3B⋯O2iii 0.86 (2) 1.92 (2) 2.7838 (13) 175.8 (17)
O3—H3C⋯O1iv 0.87 (2) 1.88 (2) 2.7372 (14) 169.8 (18)
C6—H6⋯O2 0.95 2.44 3.282 (2) 148
C10—H10⋯O2 1.00 2.33 2.7624 (13) 105
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In recent years, considerable attention has been paid to the synthesis of 1,4-dihydropyridines owing to their significant biological activity. 1,4-Dihydropyridine-containing drugs (1,4-DHPs), such as nifedipine, nicardipine, amlodipine, felodipine and others have been found to be useful as calcium channel blockers (Janis & Triggle 1983; Boecker & Guengerich 1986; Gordeev et al., 1996) and are used most frequently as cardiovascular agents for the treatment of hypertension (Buhler & Kiowski 1987). A number of DHP derivatives are employed as potential drug candidates for the treatment of congestive heart failure (Vo et al., 1995). Prompted by the diverse activities of 1,4-Dihydropyridines, we have synthesized the title compound to study its crystal structure.

The molecule features a pyrazole core bearing a phenyl as well as a 1,4-dihydropyridine-derived substituent. The six-membered ring of the latter adopts a L4B conformation according to a puckering analysis (Cremer & Pople, 1975). The least-squares planes defined by the respective intracyclic atoms of the phenyl group as well as the 1,4-dihydropyridine core enclose angles of 52.79 (8) ° and 88.10 (7) ° with the least-squares plane defined by the non-hydrogen atoms of the central pyrazole core (Fig. 1).

In the crystal, classical hydrogen bonds of the O–H···O, N–H···O and N–H···N type are apparent involving both ketonic oxygen atoms and the non-protonated nitrogen atom as acceptors. In addition, two intramolecular C–H···O contacts can be observed whose range falls by more than 0.2 Å below the sum of van-der-Waals radii of the atoms participating. The latter stem from a hydrogen atom on the phenyl group as well as the methine group and have the same ketonic oxygen atom as acceptor. In total, the entities of the title compound are connected to a three-dimensional network in the crystal structure. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these contacts is S(5)S(9)DDDC11(8) on the unary level. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. The shortest intercentroid distance between two aromatic systems was measured at 4.7199 (10) Å and is apparent between the pyrazol and the phenyl moiety in neighbouring molecules (Fig. 2).

The packing of the title compound in the crystal structure is shown in Figure 3.

Related literature top

For the pharmaceutical properties of 1,4-dihydropyridine-derived drugs, see: Janis & Triggle (1983); Boecker & Guengerich (1986); Gordeev et al. (1996); Buhler & Kiowski (1987); Vo et al. (1995). For the conformational analysis of puckering factors of five- and six-membered rings, see: Cremer & Pople (1975). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

3-phenyl-1H-pyrazole-4-carbaldehyde (0.172 g, 1.0 mmol), acetylacetone (0.2 g, 2.0 mmol) and ammonium acetate (0.092 g, 1.2 mmol) were suspended in ethanol (7 ml) and were refluxed for 5 h. After completion of the reaction, the reaction mixture was concentrated and poured into crushed ice. The precipitated product was filtered and washed with water. The resulting solid was recrystallized from a mixture of ethanol and water (v/v = 1:1), yield: 0.255 g (76.1%)

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms and C—H 1.00 Å for the methine group) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008), with U(H) set to 1.5Ueq(C). All nitrogen- and oxygen-bound H atoms were located on a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [0 0 - 1]. For clarity, only a selection of contacts apparent in the crystal structure is depicted. Symmetry operators: i -x, y + 1/2, -z + 1/2; ii x, -y + 1/2, z + 1/2; iii x - 1, -y + 1/2, z + 1/2; iv -x, y - 1/2, -z + 1/2.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
1-[5-Acetyl-2,6-dimethyl-4-(5-phenyl-1H-pyrazol-3-yl)-1,4- dihydropyridin-3-yl]ethanone monohydrate top
Crystal data top
C20H21N3O2·H2OF(000) = 752
Mr = 353.41Dx = 1.284 Mg m3
Monoclinic, P21/cMelting point = 428–430 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.3516 (2) ÅCell parameters from 8726 reflections
b = 12.4352 (3) Åθ = 2.7–28.3°
c = 15.4101 (3) ŵ = 0.09 mm1
β = 112.798 (1)°T = 200 K
V = 1828.68 (7) Å3Block, yellow
Z = 40.41 × 0.34 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
4559 independent reflections
Radiation source: fine-focus sealed tube3849 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.965, Tmax = 0.984k = 1416
17882 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.5735P]
where P = (Fo2 + 2Fc2)/3
4559 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C20H21N3O2·H2OV = 1828.68 (7) Å3
Mr = 353.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3516 (2) ŵ = 0.09 mm1
b = 12.4352 (3) ÅT = 200 K
c = 15.4101 (3) Å0.41 × 0.34 × 0.18 mm
β = 112.798 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4559 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3849 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.984Rint = 0.015
17882 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.30 e Å3
4559 reflectionsΔρmin = 0.21 e Å3
255 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05984 (10)0.17652 (9)0.56849 (7)0.0425 (2)
O20.51356 (9)0.21848 (9)0.56375 (7)0.0427 (2)
O30.79358 (10)0.22697 (7)0.16165 (6)0.0315 (2)
N10.08635 (11)0.45919 (8)0.30709 (7)0.0313 (2)
N20.16757 (11)0.51591 (8)0.38313 (7)0.0282 (2)
N30.08322 (10)0.08888 (8)0.35769 (6)0.0246 (2)
C10.31972 (13)0.50359 (9)0.54994 (8)0.0277 (2)
C20.26550 (17)0.58840 (11)0.58442 (9)0.0411 (3)
H20.17230.61210.55010.049*
C30.3462 (2)0.63860 (12)0.66841 (10)0.0515 (4)
H3A0.30790.69600.69150.062*
C40.4812 (2)0.60560 (14)0.71812 (10)0.0546 (4)
H40.53680.64030.77540.066*
C50.53562 (17)0.52211 (18)0.68471 (11)0.0608 (5)
H50.62920.49940.71920.073*
C60.45549 (14)0.47036 (14)0.60104 (10)0.0439 (3)
H60.49410.41220.57910.053*
C70.23241 (11)0.45289 (9)0.45943 (8)0.0240 (2)
C80.19044 (11)0.34797 (9)0.43179 (7)0.0216 (2)
C90.09862 (13)0.35805 (9)0.33685 (8)0.0285 (2)
H90.05090.29920.29850.034*
C100.22607 (10)0.24440 (8)0.48768 (7)0.0204 (2)
H100.28970.26170.55390.025*
C110.30207 (11)0.16707 (9)0.44653 (7)0.0219 (2)
C120.22486 (11)0.09714 (9)0.37820 (7)0.0233 (2)
C130.02198 (11)0.12349 (9)0.41735 (7)0.0232 (2)
C140.09434 (11)0.19160 (9)0.48922 (7)0.0221 (2)
C150.04407 (12)0.21902 (9)0.56260 (8)0.0262 (2)
C160.12422 (15)0.30098 (12)0.63511 (9)0.0382 (3)
H16A0.13710.36610.60350.057*
H16B0.21600.27150.67490.057*
H16C0.07180.31880.67420.057*
C170.45534 (12)0.17368 (9)0.48711 (8)0.0275 (2)
C180.54636 (14)0.12884 (13)0.43963 (10)0.0403 (3)
H18A0.51010.15220.37380.061*
H18B0.54570.05010.44230.061*
H18C0.64250.15500.47190.061*
C190.12248 (12)0.07969 (11)0.39365 (9)0.0327 (3)
H19A0.15670.04760.33070.049*
H19B0.18530.13810.39490.049*
H19C0.11990.02470.43990.049*
C200.27302 (13)0.02042 (10)0.32129 (9)0.0320 (3)
H20A0.19150.01520.27420.048*
H20B0.33520.03370.36310.048*
H20C0.32370.06030.28950.048*
H30.0349 (17)0.0442 (14)0.3127 (12)0.041 (4)*
H2A0.1834 (19)0.5891 (15)0.3761 (12)0.052 (5)*
H3B0.708 (2)0.2444 (15)0.1288 (13)0.052 (5)*
H3C0.8389 (19)0.2649 (16)0.1352 (12)0.051 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0411 (5)0.0483 (6)0.0488 (6)0.0131 (4)0.0291 (4)0.0137 (4)
O20.0226 (4)0.0535 (6)0.0444 (5)0.0012 (4)0.0046 (4)0.0123 (5)
O30.0288 (4)0.0270 (5)0.0379 (5)0.0030 (3)0.0118 (4)0.0019 (3)
N10.0339 (5)0.0258 (5)0.0265 (5)0.0009 (4)0.0034 (4)0.0030 (4)
N20.0321 (5)0.0202 (5)0.0278 (5)0.0003 (4)0.0068 (4)0.0030 (4)
N30.0256 (5)0.0228 (5)0.0229 (4)0.0016 (4)0.0066 (4)0.0041 (3)
C10.0336 (6)0.0220 (5)0.0258 (5)0.0059 (4)0.0098 (4)0.0007 (4)
C20.0586 (9)0.0276 (7)0.0334 (6)0.0049 (6)0.0137 (6)0.0011 (5)
C30.0906 (13)0.0282 (7)0.0366 (7)0.0079 (7)0.0256 (8)0.0070 (6)
C40.0712 (11)0.0577 (10)0.0309 (6)0.0320 (9)0.0153 (7)0.0133 (7)
C50.0375 (8)0.0912 (14)0.0410 (8)0.0132 (8)0.0014 (6)0.0141 (9)
C60.0315 (6)0.0564 (9)0.0376 (7)0.0012 (6)0.0065 (5)0.0101 (6)
C70.0239 (5)0.0216 (5)0.0254 (5)0.0004 (4)0.0084 (4)0.0013 (4)
C80.0214 (5)0.0197 (5)0.0227 (5)0.0011 (4)0.0072 (4)0.0007 (4)
C90.0317 (6)0.0227 (6)0.0250 (5)0.0000 (4)0.0043 (4)0.0006 (4)
C100.0202 (5)0.0187 (5)0.0204 (4)0.0003 (4)0.0055 (4)0.0001 (4)
C110.0225 (5)0.0197 (5)0.0234 (5)0.0029 (4)0.0087 (4)0.0029 (4)
C120.0267 (5)0.0196 (5)0.0227 (5)0.0046 (4)0.0087 (4)0.0034 (4)
C130.0230 (5)0.0207 (5)0.0247 (5)0.0006 (4)0.0080 (4)0.0022 (4)
C140.0223 (5)0.0205 (5)0.0228 (5)0.0008 (4)0.0080 (4)0.0012 (4)
C150.0273 (5)0.0251 (6)0.0271 (5)0.0015 (4)0.0116 (4)0.0003 (4)
C160.0427 (7)0.0440 (8)0.0337 (6)0.0104 (6)0.0212 (5)0.0139 (5)
C170.0238 (5)0.0244 (6)0.0333 (6)0.0033 (4)0.0101 (4)0.0046 (4)
C180.0289 (6)0.0501 (8)0.0464 (7)0.0014 (6)0.0195 (6)0.0014 (6)
C190.0261 (6)0.0351 (7)0.0352 (6)0.0075 (5)0.0100 (5)0.0066 (5)
C200.0347 (6)0.0287 (6)0.0321 (6)0.0065 (5)0.0123 (5)0.0054 (5)
Geometric parameters (Å, º) top
O1—C151.2329 (15)C8—C101.5133 (14)
O2—C171.2316 (15)C9—H90.9500
O3—H3B0.86 (2)C10—C141.5219 (14)
O3—H3C0.87 (2)C10—C111.5272 (14)
N1—C91.3279 (16)C10—H101.0000
N1—N21.3468 (14)C11—C121.3608 (15)
N2—C71.3549 (14)C11—C171.4649 (15)
N2—H2A0.938 (19)C12—C201.5055 (15)
N3—C131.3726 (14)C13—C141.3646 (15)
N3—C121.3788 (15)C13—C191.4977 (15)
N3—H30.878 (17)C14—C151.4565 (15)
C1—C61.3814 (18)C15—C161.5025 (16)
C1—C21.3931 (18)C16—H16A0.9800
C1—C71.4775 (15)C16—H16B0.9800
C2—C31.387 (2)C16—H16C0.9800
C2—H20.9500C17—C181.5060 (17)
C3—C41.371 (3)C18—H18A0.9800
C3—H3A0.9500C18—H18B0.9800
C4—C51.373 (3)C18—H18C0.9800
C4—H40.9500C19—H19A0.9800
C5—C61.391 (2)C19—H19B0.9800
C5—H50.9500C19—H19C0.9800
C6—H60.9500C20—H20A0.9800
C7—C81.3888 (15)C20—H20B0.9800
C8—C91.4079 (14)C20—H20C0.9800
H3B—O3—H3C102.1 (16)C12—C11—C10118.75 (9)
C9—N1—N2104.58 (9)C17—C11—C10115.75 (9)
N1—N2—C7112.61 (10)C11—C12—N3118.60 (10)
N1—N2—H2A119.0 (11)C11—C12—C20128.90 (10)
C7—N2—H2A127.7 (11)N3—C12—C20112.46 (10)
C13—N3—C12123.31 (9)C14—C13—N3119.18 (10)
C13—N3—H3117.2 (11)C14—C13—C19127.29 (10)
C12—N3—H3117.3 (11)N3—C13—C19113.53 (10)
C6—C1—C2118.71 (12)C13—C14—C15121.77 (10)
C6—C1—C7121.70 (11)C13—C14—C10117.93 (9)
C2—C1—C7119.58 (11)C15—C14—C10120.19 (9)
C3—C2—C1120.69 (15)O1—C15—C14122.76 (11)
C3—C2—H2119.7O1—C15—C16118.82 (10)
C1—C2—H2119.7C14—C15—C16118.41 (10)
C4—C3—C2120.12 (15)C15—C16—H16A109.5
C4—C3—H3A119.9C15—C16—H16B109.5
C2—C3—H3A119.9H16A—C16—H16B109.5
C3—C4—C5119.63 (13)C15—C16—H16C109.5
C3—C4—H4120.2H16A—C16—H16C109.5
C5—C4—H4120.2H16B—C16—H16C109.5
C4—C5—C6120.89 (16)O2—C17—C11118.77 (11)
C4—C5—H5119.6O2—C17—C18117.87 (11)
C6—C5—H5119.6C11—C17—C18123.36 (11)
C1—C6—C5119.96 (15)C17—C18—H18A109.5
C1—C6—H6120.0C17—C18—H18B109.5
C5—C6—H6120.0H18A—C18—H18B109.5
N2—C7—C8106.64 (9)C17—C18—H18C109.5
N2—C7—C1119.24 (10)H18A—C18—H18C109.5
C8—C7—C1134.00 (10)H18B—C18—H18C109.5
C7—C8—C9103.89 (9)C13—C19—H19A109.5
C7—C8—C10130.29 (9)C13—C19—H19B109.5
C9—C8—C10125.78 (10)H19A—C19—H19B109.5
N1—C9—C8112.27 (10)C13—C19—H19C109.5
N1—C9—H9123.9H19A—C19—H19C109.5
C8—C9—H9123.9H19B—C19—H19C109.5
C8—C10—C14110.72 (8)C12—C20—H20A109.5
C8—C10—C11110.53 (8)C12—C20—H20B109.5
C14—C10—C11110.10 (8)H20A—C20—H20B109.5
C8—C10—H10108.5C12—C20—H20C109.5
C14—C10—H10108.5H20A—C20—H20C109.5
C11—C10—H10108.5H20B—C20—H20C109.5
C12—C11—C17125.48 (10)
C9—N1—N2—C71.05 (14)C14—C10—C11—C1233.04 (13)
C6—C1—C2—C30.0 (2)C8—C10—C11—C1791.88 (11)
C7—C1—C2—C3178.86 (13)C14—C10—C11—C17145.49 (9)
C1—C2—C3—C40.5 (2)C17—C11—C12—N3169.86 (10)
C2—C3—C4—C50.5 (2)C10—C11—C12—N38.51 (15)
C3—C4—C5—C60.1 (3)C17—C11—C12—C207.34 (18)
C2—C1—C6—C50.6 (2)C10—C11—C12—C20174.29 (10)
C7—C1—C6—C5178.25 (14)C13—N3—C12—C1118.40 (16)
C4—C5—C6—C10.7 (3)C13—N3—C12—C20159.25 (10)
N1—N2—C7—C80.31 (13)C12—N3—C13—C1416.24 (16)
N1—N2—C7—C1176.91 (10)C12—N3—C13—C19163.95 (10)
C6—C1—C7—N2128.63 (13)N3—C13—C14—C15171.08 (10)
C2—C1—C7—N250.24 (16)C19—C13—C14—C159.13 (18)
C6—C1—C7—C855.9 (2)N3—C13—C14—C1012.63 (15)
C2—C1—C7—C8125.23 (15)C19—C13—C14—C10167.15 (11)
N2—C7—C8—C90.53 (12)C8—C10—C14—C1387.54 (12)
C1—C7—C8—C9175.35 (13)C11—C10—C14—C1334.99 (13)
N2—C7—C8—C10178.25 (10)C8—C10—C14—C1588.80 (11)
C1—C7—C8—C102.4 (2)C11—C10—C14—C15148.67 (10)
N2—N1—C9—C81.40 (14)C13—C14—C15—O15.77 (18)
C7—C8—C9—N11.23 (14)C10—C14—C15—O1178.02 (11)
C10—C8—C9—N1179.10 (10)C13—C14—C15—C16175.47 (11)
C7—C8—C10—C14119.14 (12)C10—C14—C15—C160.73 (16)
C9—C8—C10—C1458.14 (14)C12—C11—C17—O2160.83 (12)
C7—C8—C10—C11118.59 (12)C10—C11—C17—O217.58 (16)
C9—C8—C10—C1164.13 (14)C12—C11—C17—C1819.51 (18)
C8—C10—C11—C1289.60 (11)C10—C11—C17—C18162.08 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.938 (19)1.855 (19)2.7822 (14)169.1 (16)
N3—H3···N1ii0.878 (17)2.075 (17)2.9454 (13)171.1 (15)
O3—H3B···O2iii0.86 (2)1.92 (2)2.7838 (13)175.8 (17)
O3—H3C···O1iv0.87 (2)1.88 (2)2.7372 (14)169.8 (18)
C6—H6···O20.952.443.282 (2)148
C10—H10···O21.002.332.7624 (13)105
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H21N3O2·H2O
Mr353.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)10.3516 (2), 12.4352 (3), 15.4101 (3)
β (°) 112.798 (1)
V3)1828.68 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.41 × 0.34 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.965, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
17882, 4559, 3849
Rint0.015
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.114, 1.04
No. of reflections4559
No. of parameters255
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.21

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.938 (19)1.855 (19)2.7822 (14)169.1 (16)
N3—H3···N1ii0.878 (17)2.075 (17)2.9454 (13)171.1 (15)
O3—H3B···O2iii0.86 (2)1.92 (2)2.7838 (13)175.8 (17)
O3—H3C···O1iv0.87 (2)1.88 (2)2.7372 (14)169.8 (18)
C6—H6···O20.952.443.282 (2)148.1
C10—H10···O21.002.332.7624 (13)105.3
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y+1/2, z1/2.
 

Acknowledgements

AMI is thankful to the Director of the National Institute of Technology for providing research facilities and also thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, and the Government of India for a Young Scientist award.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoecker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 29, 1596–1603.  CrossRef CAS PubMed Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationBuhler, F. R. & Kiowski, W. (1987). J. Hypertens. 5, S3–S10.  CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924–928.  CrossRef CAS Web of Science Google Scholar
First citationJanis, R. A. & Triggle, D. J. (1983). J. Med. Chem. 26, 775–785.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851–2859.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3156-o3157
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds