metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­bis­­[2-(3-oxo-1,3-di­hydro-2-benzo­furan-1-yl)acetato-κO]cobalt(II)]-μ-1,2-bis­­(pyridin-4-yl)ethane-κ2N:N′]

aSchool of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
*Correspondence e-mail: cysun@ustb.edu.cn

(Received 17 October 2012; accepted 25 October 2012; online 31 October 2012)

In the title complex, [Co(C10H7O4)2(C12H12N2)(H2O)2]n, the CoII ion is located on a crystallographic centre of symmetry and is six-coordinated by two N atoms from two 1,2-bis­(4-pyrid­yl)ethane ligands, two carboxylate O atoms from two 1,3-dihydro-3-oxo-1-isobenzofuran­acetate ligands and two terminal water ligands. The 1,2-bis(4-pyrid­yl)ethane ligands act as bidentate ligands, and bridge the CoII ions into infinite chains extending parallel to [010]. In these chains, there are intra-mol­ecular O—H⋯O hydrogen bonding between the coordination water mol­ecules and carboxyl­ate groups. Inter-mol­ecular O—H⋯O hydrogen bonding between the adjacent chains and ππ stacking inter­actions result in the formation of a three-dimensional supra­molecular network.

Related literature

For in situ ligand reactions, see: Zhang et al. (2005[Zhang, X. M. (2005). Coord. Chem. Rev. 249, 1201-1219.]); Chen et al. (2007[Chen, X. M. & Tong, M. L. (2007). Acc. Chem. Res. 40, 162-170.]); Zhao et al. (2008[Zhao, H., Qu, Z. R., Ye, H. Y. & Xiong, R. G. (2008). Chem. Soc. Rev. 37, 84-100.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H7O4)2(C12H12N2)(H2O)2]

  • Mr = 661.51

  • Triclinic, [P \overline 1]

  • a = 5.4599 (12) Å

  • b = 10.374 (2) Å

  • c = 13.617 (3) Å

  • α = 93.912 (4)°

  • β = 99.409 (4)°

  • γ = 97.651 (4)°

  • V = 750.9 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.749, Tmax = 1.000

  • 4258 measured reflections

  • 3027 independent reflections

  • 2306 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.133

  • S = 1.05

  • 3027 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O2 0.90 (5) 1.72 (5) 2.603 (4) 168 (4)
O5—H5B⋯O1 0.90 (5) 2.57 (4) 2.981 (3) 109 (3)
O5—H5A⋯O1i 0.76 (4) 1.99 (4) 2.752 (3) 172 (4)
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In situ ligand reactions have been extensively used to construct new organic ligands and coordination polymers, with novel structures and potential applications, especially those that could not be obtained in direct preparation from the ligands. Furthermore, they are helpful to study reaction mechanism (Zhang et al., 2005; Chen et al., 2007; Zhao et al., 2008). Herein we report the synthesis and structure of the title complex from in situ hydroxylation and esterification of ethylene group. In the title complex (Fig. 1), each CoII ion is located on a crystallographic centre of symmetry and coordinated to four oxygen atoms and two nitrogen atoms, and the coordination geometry can be described as a distorted octahedron. 1,3-Dihydro-3-oxo-1 -isobenzofuranacetate ligand adopts a monodentate mode, coordinating to CoII ion with a carboxylate oxygen atom. While 1,2-bis(4-pyridyl)ethane ligands bridge CoII ions into one-dimensional infinite chains. In these chains, intra-molecular O—H···O hydrogen bonding are observed between the carboxylate oxygen atoms and the coordination water molecules (O(2)···O(5) 2.603 (4) Å and O(1)···O(5) 2.981 (3) Å). Between the adjacent chains, there are inter-molecular O—H···O hydrogen bonding (O(1)···O(5) 2.752 (3) Å), which connects the chains into a three-dimensional supramolecular network (Table 1 and Fig. 2). 1,3-Dihydro-3-oxo-1-isobenzofuranacetate ligands are parallel and the face-to-face distance is 3.88 Å, indicating the existence of the weak π···π stacking interactions, which brings further stability for the structure.

Related literature top

For in situ ligand reactions, see: Zhang et al. (2005); Chen et al. (2007); Zhao et al. (2008).

Experimental top

A mixture of o-carboxycinnamic acid (0.02 g, 0.1 mmol), CoCl2.6H2O (0.024 g, 0.1 mmol), 1,2-bis(4-pyridyl)ethane (0.018 g, 0.1 mmol), and deionized water(5 ml) was sealed in a Teflon-lined stainless vessel(25 ml), and heated at 120 °C for 72 h, then cooled slowly to room temperature. There was no solid obtained. The filtration was left to stand in air. After two weeks, red block single crystals were obtained. Yield: 0.015 g (22.7%).

Refinement top

The water H atoms were located in the Fourier difference map and refined with isotropic coordinates. The carbon H atoms were included in the refinement in the riding model approximation, with C–H bond distance 0.93–0.98 Å and U(H)set to 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of CoII ion in the title complex (the symmetry code for A: -x + 1, -y + 1, -z + 1).
[Figure 2] Fig. 2. The three-dimensional supramolecular network of the title complex (viewed along the a axis).
catena-Poly[[diaquabis[2-(3-oxo-1,3-dihydro-2-benzofuran-1-yl)acetato- κO]cobalt(II)]-µ-1,2-bis(pyridin-4-yl)ethane-κ2N:N'] top
Crystal data top
[Co(C10H7O4)2(C12H12N2)(H2O)2]Z = 1
Mr = 661.51F(000) = 343
Triclinic, P1Dx = 1.463 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.4599 (12) ÅCell parameters from 1338 reflections
b = 10.374 (2) Åθ = 1.5–26.4°
c = 13.617 (3) ŵ = 0.63 mm1
α = 93.912 (4)°T = 293 K
β = 99.409 (4)°Block, red
γ = 97.651 (4)°0.20 × 0.18 × 0.10 mm
V = 750.9 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3027 independent reflections
Radiation source: fine-focus sealed tube2306 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
phi and ω scansθmax = 26.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 46
Tmin = 0.749, Tmax = 1.000k = 1212
4258 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.051P)2 + 0.6286P]
where P = (Fo2 + 2Fc2)/3
3027 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Co(C10H7O4)2(C12H12N2)(H2O)2]γ = 97.651 (4)°
Mr = 661.51V = 750.9 (3) Å3
Triclinic, P1Z = 1
a = 5.4599 (12) ÅMo Kα radiation
b = 10.374 (2) ŵ = 0.63 mm1
c = 13.617 (3) ÅT = 293 K
α = 93.912 (4)°0.20 × 0.18 × 0.10 mm
β = 99.409 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3027 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2306 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 1.000Rint = 0.026
4258 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.73 e Å3
3027 reflectionsΔρmin = 0.61 e Å3
213 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.0231 (2)
N10.5225 (5)0.4729 (3)0.34064 (18)0.0312 (7)
O10.6967 (4)0.3420 (2)0.52914 (16)0.0326 (6)
O20.3880 (5)0.1819 (3)0.5357 (3)0.0613 (9)
O30.7376 (7)0.1884 (4)0.7644 (2)0.0817 (12)
O40.9063 (9)0.2427 (5)0.9246 (3)0.1123 (17)
C10.6125 (7)0.2293 (4)0.5499 (3)0.0358 (9)
C20.8056 (8)0.1465 (4)0.5951 (3)0.0498 (11)
H2A0.81870.07780.54510.060*
H2B0.96800.20090.61240.060*
C30.7443 (8)0.0860 (5)0.6858 (3)0.0566 (12)
H30.58150.02960.66960.068*
C40.9426 (8)0.0100 (5)0.7330 (3)0.0523 (11)
C51.0204 (9)0.0604 (5)0.8312 (3)0.0574 (12)
C61.1928 (11)0.0029 (6)0.8936 (4)0.0823 (17)
H61.24030.03350.96070.099*
C71.2914 (11)0.0991 (6)0.8550 (4)0.0839 (18)
H71.40780.13820.89610.101*
C81.2209 (10)0.1446 (5)0.7563 (4)0.0710 (15)
H81.29320.21310.73110.085*
C91.0467 (9)0.0916 (5)0.6938 (4)0.0640 (13)
H90.99980.12310.62680.077*
C100.8928 (11)0.1723 (6)0.8499 (4)0.0753 (16)
C110.7230 (7)0.5193 (4)0.3025 (3)0.0454 (10)
H110.86500.56010.34640.054*
C120.7320 (8)0.5102 (5)0.2011 (3)0.0532 (11)
H120.87630.54540.17870.064*
C130.5273 (8)0.4491 (4)0.1340 (2)0.0453 (10)
C140.3274 (8)0.3949 (5)0.1727 (3)0.0607 (13)
H140.18840.34800.13050.073*
C150.3302 (8)0.4094 (5)0.2746 (3)0.0542 (12)
H150.18920.37250.29840.065*
C160.5295 (10)0.4387 (5)0.0226 (3)0.0609 (13)
H16A0.69350.42200.01090.073*
H16B0.40680.36550.00980.073*
O50.1581 (5)0.3715 (3)0.47022 (17)0.0317 (6)
H5A0.026 (8)0.368 (4)0.482 (3)0.049 (13)*
H5B0.216 (8)0.299 (5)0.491 (3)0.057 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0194 (3)0.0328 (4)0.0189 (3)0.0042 (3)0.0066 (2)0.0067 (3)
N10.0312 (15)0.045 (2)0.0198 (13)0.0076 (13)0.0064 (11)0.0088 (13)
O10.0244 (12)0.0404 (17)0.0372 (13)0.0099 (11)0.0096 (10)0.0136 (11)
O20.0341 (16)0.046 (2)0.108 (3)0.0054 (13)0.0149 (16)0.0305 (18)
O30.104 (3)0.095 (3)0.064 (2)0.061 (2)0.026 (2)0.017 (2)
O40.165 (4)0.123 (4)0.063 (2)0.060 (3)0.036 (3)0.007 (2)
C10.033 (2)0.042 (2)0.0386 (19)0.0136 (17)0.0135 (15)0.0137 (17)
C20.049 (2)0.052 (3)0.057 (2)0.021 (2)0.0152 (19)0.024 (2)
C30.051 (3)0.056 (3)0.066 (3)0.008 (2)0.010 (2)0.026 (2)
C40.056 (3)0.050 (3)0.051 (2)0.012 (2)0.002 (2)0.017 (2)
C50.063 (3)0.060 (3)0.050 (2)0.012 (2)0.007 (2)0.015 (2)
C60.100 (4)0.089 (5)0.052 (3)0.021 (4)0.016 (3)0.019 (3)
C70.092 (4)0.073 (4)0.083 (4)0.033 (3)0.022 (3)0.025 (3)
C80.073 (3)0.050 (3)0.088 (4)0.022 (3)0.006 (3)0.015 (3)
C90.082 (3)0.045 (3)0.062 (3)0.022 (3)0.009 (2)0.003 (2)
C100.098 (4)0.083 (4)0.056 (3)0.036 (3)0.023 (3)0.016 (3)
C110.047 (2)0.059 (3)0.0278 (18)0.0039 (19)0.0091 (16)0.0049 (18)
C120.061 (3)0.067 (3)0.035 (2)0.001 (2)0.023 (2)0.010 (2)
C130.069 (3)0.052 (3)0.0201 (17)0.019 (2)0.0123 (18)0.0091 (17)
C140.053 (3)0.097 (4)0.0250 (19)0.000 (2)0.0016 (18)0.007 (2)
C150.043 (2)0.088 (4)0.0270 (18)0.009 (2)0.0090 (17)0.002 (2)
C160.095 (4)0.071 (4)0.0237 (19)0.033 (3)0.014 (2)0.0065 (19)
O50.0219 (13)0.0407 (17)0.0342 (13)0.0022 (11)0.0096 (10)0.0082 (11)
Geometric parameters (Å, º) top
Co1—O12.101 (2)C5—C101.461 (7)
Co1—O1i2.101 (2)C6—C71.362 (7)
Co1—O5i2.108 (3)C6—H60.9300
Co1—O52.108 (3)C7—C81.369 (7)
Co1—N1i2.195 (2)C7—H70.9300
Co1—N12.195 (2)C8—C91.368 (6)
N1—C151.331 (5)C8—H80.9300
N1—C111.334 (5)C9—H90.9300
O1—C11.266 (4)C11—C121.386 (5)
O2—C11.238 (4)C11—H110.9300
O3—C101.357 (6)C12—C131.373 (6)
O3—C31.464 (6)C12—H120.9300
O4—C101.197 (6)C13—C141.360 (6)
C1—C21.526 (5)C13—C161.515 (5)
C2—C31.488 (5)C14—C151.383 (5)
C2—H2A0.9700C14—H140.9300
C2—H2B0.9700C15—H150.9300
C3—C41.509 (6)C16—C16ii1.501 (9)
C3—H30.9800C16—H16A0.9700
C4—C91.379 (6)C16—H16B0.9700
C4—C51.379 (6)O5—H5A0.76 (4)
C5—C61.386 (6)O5—H5B0.90 (5)
O1—Co1—O1i180.000 (1)C6—C5—C10131.1 (5)
O1—Co1—O5i89.80 (10)C7—C6—C5118.9 (5)
O1i—Co1—O5i90.20 (10)C7—C6—H6120.5
O1—Co1—O590.20 (10)C5—C6—H6120.5
O1i—Co1—O589.80 (10)C6—C7—C8120.6 (4)
O5i—Co1—O5180.00 (14)C6—C7—H7119.7
O1—Co1—N1i89.22 (9)C8—C7—H7119.7
O1i—Co1—N1i90.78 (9)C9—C8—C7121.6 (5)
O5i—Co1—N1i88.53 (10)C9—C8—H8119.2
O5—Co1—N1i91.47 (10)C7—C8—H8119.2
O1—Co1—N190.78 (9)C8—C9—C4118.0 (4)
O1i—Co1—N189.22 (9)C8—C9—H9121.0
O5i—Co1—N191.47 (10)C4—C9—H9121.0
O5—Co1—N188.53 (10)O4—C10—O3121.3 (5)
N1i—Co1—N1180.000 (1)O4—C10—C5130.3 (5)
C15—N1—C11115.3 (3)O3—C10—C5108.4 (4)
C15—N1—Co1121.1 (2)N1—C11—C12123.8 (4)
C11—N1—Co1123.6 (2)N1—C11—H11118.1
C1—O1—Co1128.2 (2)C12—C11—H11118.1
C10—O3—C3110.7 (4)C13—C12—C11119.8 (4)
O2—C1—O1125.1 (3)C13—C12—H12120.1
O2—C1—C2118.2 (4)C11—C12—H12120.1
O1—C1—C2116.7 (3)C14—C13—C12116.7 (3)
C3—C2—C1113.8 (3)C14—C13—C16122.0 (4)
C3—C2—H2A108.8C12—C13—C16121.3 (4)
C1—C2—H2A108.8C13—C14—C15120.3 (4)
C3—C2—H2B108.8C13—C14—H14119.9
C1—C2—H2B108.8C15—C14—H14119.9
H2A—C2—H2B107.7N1—C15—C14124.0 (4)
O3—C3—C2109.7 (4)N1—C15—H15118.0
O3—C3—C4103.6 (3)C14—C15—H15118.0
C2—C3—C4113.4 (4)C16ii—C16—C13111.5 (4)
O3—C3—H3110.0C16ii—C16—H16A109.3
C2—C3—H3110.0C13—C16—H16A109.3
C4—C3—H3110.0C16ii—C16—H16B109.3
C9—C4—C5120.9 (4)C13—C16—H16B109.3
C9—C4—C3131.1 (4)H16A—C16—H16B108.0
C5—C4—C3108.0 (4)Co1—O5—H5A138 (3)
C4—C5—C6119.9 (5)Co1—O5—H5B99 (3)
C4—C5—C10109.0 (4)H5A—O5—H5B106 (4)
O1—Co1—N1—C1599.1 (3)C3—C4—C5—C103.4 (6)
O1i—Co1—N1—C1580.9 (3)C4—C5—C6—C73.1 (9)
O5i—Co1—N1—C15171.1 (3)C10—C5—C6—C7177.3 (6)
O5—Co1—N1—C158.9 (3)C5—C6—C7—C80.2 (10)
O1—Co1—N1—C1182.1 (3)C6—C7—C8—C91.4 (10)
O1i—Co1—N1—C1197.9 (3)C7—C8—C9—C40.0 (8)
O5i—Co1—N1—C117.7 (3)C5—C4—C9—C82.9 (8)
O5—Co1—N1—C11172.3 (3)C3—C4—C9—C8178.1 (5)
O5i—Co1—O1—C1161.1 (3)C3—O3—C10—O4176.7 (6)
O5—Co1—O1—C118.9 (3)C3—O3—C10—C52.4 (6)
N1i—Co1—O1—C172.6 (3)C4—C5—C10—O4179.7 (7)
N1—Co1—O1—C1107.4 (3)C6—C5—C10—O40.1 (11)
Co1—O1—C1—O216.8 (5)C4—C5—C10—O30.7 (6)
Co1—O1—C1—C2163.8 (2)C6—C5—C10—O3178.9 (5)
O2—C1—C2—C348.9 (6)C15—N1—C11—C123.5 (6)
O1—C1—C2—C3131.7 (4)Co1—N1—C11—C12175.4 (3)
C10—O3—C3—C2125.7 (4)N1—C11—C12—C130.9 (7)
C10—O3—C3—C44.3 (5)C11—C12—C13—C142.9 (7)
C1—C2—C3—O361.7 (5)C11—C12—C13—C16179.3 (4)
C1—C2—C3—C4177.1 (4)C12—C13—C14—C153.8 (7)
O3—C3—C4—C9174.5 (5)C16—C13—C14—C15178.4 (4)
C2—C3—C4—C955.6 (7)C11—N1—C15—C142.5 (7)
O3—C3—C4—C54.6 (5)Co1—N1—C15—C14176.4 (4)
C2—C3—C4—C5123.5 (5)C13—C14—C15—N11.2 (8)
C9—C4—C5—C64.5 (8)C14—C13—C16—C16ii100.1 (7)
C3—C4—C5—C6176.3 (5)C12—C13—C16—C16ii82.3 (7)
C9—C4—C5—C10175.8 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O20.90 (5)1.72 (5)2.603 (4)168 (4)
O5—H5B···O10.90 (5)2.57 (4)2.981 (3)109 (3)
O5—H5A···O1iii0.76 (4)1.99 (4)2.752 (3)172 (4)
Symmetry code: (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Co(C10H7O4)2(C12H12N2)(H2O)2]
Mr661.51
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.4599 (12), 10.374 (2), 13.617 (3)
α, β, γ (°)93.912 (4), 99.409 (4), 97.651 (4)
V3)750.9 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.749, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4258, 3027, 2306
Rint0.026
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.133, 1.05
No. of reflections3027
No. of parameters213
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.61

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O20.90 (5)1.72 (5)2.603 (4)168 (4)
O5—H5B···O10.90 (5)2.57 (4)2.981 (3)109 (3)
O5—H5A···O1i0.76 (4)1.99 (4)2.752 (3)172 (4)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by National Nature Science Foundation of China (No. 21101013) and Fundamental Research Funds for the Central Universities (No. FRF-BR-10–002 A).

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X. M. & Tong, M. L. (2007). Acc. Chem. Res. 40, 162–170.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. M. (2005). Coord. Chem. Rev. 249, 1201–1219.  Web of Science CrossRef CAS Google Scholar
First citationZhao, H., Qu, Z. R., Ye, H. Y. & Xiong, R. G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds