metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl­bis­­(pyrazine-2-carboxyl­ato-κ2N1,O)tin(IV)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: m-pouramini@cc.sbu.ac.ir

(Received 4 October 2012; accepted 15 October 2012; online 20 October 2012)

In the title compound, [Sn(CH3)2(C5H3N2O2)2], the SnIV atom is twice N,O-chelated by two pyrazine-2-carboxyl­ate ligands. The distorted six-coordination is completed by two tin-bound methyl C atoms. The C2N2O2 donor set defines a skewed trapezoidal–bipyramidal geometry. Inter­molecular ππ inter­actions between the pyrazine rings [centroid–centroid distance = 3.8112 (13) Å] are observed.

Related literature

For background to organotin compounds, see: Dakternieks et al. (2003[Dakternieks, D., Duthie, A., Smyth, D. R., Stapleton, C. P. D. & Tiekink, E. R. T. (2003). Organometallics, 22, 4599-4603.]); Tiekink (1991[Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.]); Yin et al. (2005[Yin, H.-D., Wang, Q.-B. & Xue, C.-C. (2005). J. Organomet. Chem. 690, 3111-3117.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)2(C5H3N2O2)2]

  • Mr = 394.95

  • Monoclinic, P 21 /c

  • a = 9.2887 (6) Å

  • b = 12.3253 (7) Å

  • c = 12.6596 (7) Å

  • β = 103.738 (1)°

  • V = 1407.88 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.84 mm−1

  • T = 295 K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.527, Tmax = 0.710

  • 8657 measured reflections

  • 3193 independent reflections

  • 2892 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.051

  • S = 1.06

  • 3193 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—C1 2.097 (2)
Sn1—C2 2.095 (2)
Sn1—O1 2.1506 (16)
Sn1—O3 2.1238 (15)
Sn1—N1 2.6646 (18)
Sn1—N3 2.5107 (18)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The reaction of appropriate amount of dimethyltin dichloride and pyrazine-2-carboxylic acid in dry methanol provided the title compound in good yield. The six-coordinated geometry around the SnIV atom is better described as skew-trapezoidal bipyramidal (Fig. 1, Table 1). Intermolecular ππ interactions between the pyrazine rings [centroid–centroid distance = 3.8112 (13) Å] stabilize the structure.

Related literature top

For background to organotin compounds, see: Dakternieks et al. (2003); Tiekink (1991); Yin et al. (2005).

Experimental top

Dimethyltin dichloride (0.22 g, 1 mmol) was treated with sodium methoxide (0.1 g, 2 mmol) in methanol (10 ml) to produce dimethyltin dimethoxide and sodium chloride. The sodium chloride precipitate was removed by filtration and then pyrazine-2-carboxylic acid (0.248 g, 2 mmol) in methanol (20 ml) was added to the filtrate. The solution was refluxed for 3 h. Evaporation of the solvent yielded a white solid, which was purified by recrystallization from methanol (yield: 70%. m.p.: 118–120°C).

Refinement top

H atoms were placed in calculated positions and refined as riding atoms, with C–H = 0.93 (CH) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). Omitted reflections owing to bad disagreement were (-9 10 6), (-6 13 3), (8 0 4), (2 0 8) and (-1 8 6).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Dimethylbis(pyrazine-2-carboxylato-κ2N1,O)tin(IV) top
Crystal data top
[Sn(CH3)2(C5H3N2O2)2]F(000) = 776
Mr = 394.95Dx = 1.863 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5890 reflections
a = 9.2887 (6) Åθ = 2.3–28.3°
b = 12.3253 (7) ŵ = 1.84 mm1
c = 12.6596 (7) ÅT = 295 K
β = 103.738 (1)°Prism, colorless
V = 1407.88 (14) Å30.40 × 0.40 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3193 independent reflections
Radiation source: fine-focus sealed tube2892 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1211
Tmin = 0.527, Tmax = 0.710k = 1613
8657 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0201P)2 + 0.7349P]
where P = (Fo2 + 2Fc2)/3
3193 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Sn(CH3)2(C5H3N2O2)2]V = 1407.88 (14) Å3
Mr = 394.95Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2887 (6) ŵ = 1.84 mm1
b = 12.3253 (7) ÅT = 295 K
c = 12.6596 (7) Å0.40 × 0.40 × 0.20 mm
β = 103.738 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3193 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2892 reflections with I > 2σ(I)
Tmin = 0.527, Tmax = 0.710Rint = 0.022
8657 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.06Δρmax = 0.35 e Å3
3193 reflectionsΔρmin = 0.47 e Å3
192 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.826212 (14)0.699389 (11)0.602141 (11)0.02943 (6)
O10.87907 (17)0.71196 (14)0.44616 (13)0.0415 (4)
O20.99121 (19)0.78275 (16)0.32619 (13)0.0493 (4)
O30.62830 (16)0.65997 (14)0.48535 (12)0.0374 (3)
O40.39196 (17)0.61066 (15)0.43503 (13)0.0469 (4)
N11.09601 (19)0.77904 (14)0.61292 (14)0.0320 (4)
N21.3488 (2)0.87890 (18)0.57415 (17)0.0478 (5)
N30.62453 (19)0.65022 (15)0.69497 (14)0.0340 (4)
N40.3759 (2)0.57674 (16)0.76062 (16)0.0421 (4)
C10.7815 (3)0.86219 (19)0.6305 (2)0.0466 (6)
H1A0.83460.90840.59180.070*
H1B0.81230.87720.70700.070*
H1C0.67700.87550.60570.070*
C20.9233 (3)0.54697 (19)0.6433 (2)0.0444 (5)
H2A1.00750.53910.61230.067*
H2B0.85230.49120.61550.067*
H2C0.95460.54080.72100.067*
C30.9857 (2)0.76167 (19)0.41998 (17)0.0346 (4)
C41.1116 (2)0.79754 (16)0.51203 (17)0.0302 (4)
C51.2359 (3)0.8484 (2)0.49323 (19)0.0405 (5)
H51.24090.86180.42190.049*
C61.3319 (3)0.86057 (19)0.67419 (19)0.0417 (5)
H61.40740.88120.73310.050*
C71.2068 (3)0.81211 (17)0.69396 (18)0.0361 (5)
H71.19960.80230.76540.043*
C120.6207 (3)0.6469 (2)0.79961 (18)0.0445 (6)
H120.70300.66960.85230.053*
C130.4970 (3)0.6103 (2)0.83094 (19)0.0449 (6)
H130.49860.60920.90470.054*
C140.3798 (2)0.58104 (18)0.65644 (18)0.0367 (5)
H140.29740.55770.60420.044*
C150.5024 (2)0.61905 (16)0.62266 (16)0.0295 (4)
C160.5045 (2)0.62962 (16)0.50495 (17)0.0321 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02845 (8)0.03258 (9)0.02919 (9)0.00030 (5)0.01068 (6)0.00025 (5)
O10.0333 (8)0.0637 (11)0.0291 (8)0.0101 (7)0.0106 (6)0.0007 (7)
O20.0415 (9)0.0830 (13)0.0266 (8)0.0074 (8)0.0144 (7)0.0015 (8)
O30.0337 (8)0.0518 (9)0.0280 (7)0.0071 (7)0.0097 (6)0.0015 (7)
O40.0346 (8)0.0667 (11)0.0359 (8)0.0095 (8)0.0012 (7)0.0012 (8)
N10.0310 (9)0.0379 (9)0.0296 (9)0.0011 (7)0.0123 (7)0.0020 (7)
N20.0421 (11)0.0589 (13)0.0449 (11)0.0164 (9)0.0151 (9)0.0052 (10)
N30.0278 (8)0.0442 (10)0.0309 (9)0.0032 (7)0.0088 (7)0.0047 (8)
N40.0380 (10)0.0471 (11)0.0464 (11)0.0019 (8)0.0203 (9)0.0023 (9)
C10.0429 (13)0.0383 (12)0.0571 (15)0.0043 (10)0.0089 (11)0.0073 (11)
C20.0437 (13)0.0380 (12)0.0511 (14)0.0060 (10)0.0104 (11)0.0047 (10)
C30.0303 (10)0.0456 (12)0.0303 (10)0.0039 (9)0.0119 (8)0.0010 (9)
C40.0287 (10)0.0363 (10)0.0289 (10)0.0026 (8)0.0134 (8)0.0002 (8)
C50.0397 (12)0.0510 (13)0.0353 (11)0.0075 (10)0.0175 (9)0.0000 (10)
C60.0394 (12)0.0449 (13)0.0404 (12)0.0090 (10)0.0082 (10)0.0043 (10)
C70.0402 (12)0.0396 (11)0.0296 (11)0.0002 (9)0.0106 (9)0.0006 (8)
C120.0348 (11)0.0687 (16)0.0308 (11)0.0037 (11)0.0093 (9)0.0065 (11)
C130.0424 (12)0.0627 (15)0.0338 (11)0.0054 (11)0.0171 (10)0.0010 (11)
C140.0301 (10)0.0415 (12)0.0399 (12)0.0040 (9)0.0109 (9)0.0025 (9)
C150.0276 (9)0.0286 (10)0.0333 (10)0.0016 (7)0.0091 (8)0.0016 (8)
C160.0305 (10)0.0330 (10)0.0328 (10)0.0004 (8)0.0079 (8)0.0006 (8)
Geometric parameters (Å, º) top
Sn1—C12.097 (2)C1—H1A0.9600
Sn1—C22.095 (2)C1—H1B0.9600
Sn1—O12.1506 (16)C1—H1C0.9600
Sn1—O32.1238 (15)C2—H2A0.9600
Sn1—N12.6646 (18)C2—H2B0.9600
Sn1—N32.5107 (18)C2—H2C0.9600
O1—C31.274 (3)C3—C41.508 (3)
O2—C31.228 (3)C4—C51.383 (3)
O3—C161.288 (3)C5—H50.9300
O4—C161.221 (2)C6—C71.382 (3)
N1—C71.332 (3)C6—H60.9300
N1—C41.339 (3)C7—H70.9300
N2—C61.332 (3)C12—C131.378 (3)
N2—C51.334 (3)C12—H120.9300
N3—C121.334 (3)C13—H130.9300
N3—C151.334 (3)C14—C151.389 (3)
N4—C131.324 (3)C14—H140.9300
N4—C141.329 (3)C15—C161.501 (3)
C2—Sn1—C1154.98 (10)Sn1—C2—H2C109.5
C2—Sn1—O3102.62 (8)H2A—C2—H2C109.5
C1—Sn1—O399.44 (8)H2B—C2—H2C109.5
C2—Sn1—O196.58 (8)O2—C3—O1124.5 (2)
C1—Sn1—O1100.72 (9)O2—C3—C4118.9 (2)
O3—Sn1—O174.09 (6)O1—C3—C4116.63 (18)
C2—Sn1—N389.54 (8)N1—C4—C5121.7 (2)
C1—Sn1—N387.17 (9)N1—C4—C3116.59 (18)
O3—Sn1—N369.63 (6)C5—C4—C3121.71 (19)
O1—Sn1—N3143.67 (6)N2—C5—C4122.1 (2)
C2—Sn1—N188.49 (8)N2—C5—H5118.9
C1—Sn1—N182.01 (8)C4—C5—H5118.9
O3—Sn1—N1140.17 (5)N2—C6—C7122.7 (2)
O1—Sn1—N166.64 (6)N2—C6—H6118.7
N3—Sn1—N1149.56 (5)C7—C6—H6118.7
C3—O1—Sn1129.40 (14)N1—C7—C6121.4 (2)
C16—O3—Sn1126.66 (13)N1—C7—H7119.3
C7—N1—C4116.35 (18)C6—C7—H7119.3
C7—N1—Sn1134.17 (14)N3—C12—C13121.1 (2)
C4—N1—Sn1109.12 (13)N3—C12—H12119.5
C6—N2—C5115.7 (2)C13—C12—H12119.5
C12—N3—C15116.99 (19)N4—C13—C12122.8 (2)
C12—N3—Sn1132.12 (15)N4—C13—H13118.6
C15—N3—Sn1110.85 (13)C12—C13—H13118.6
C13—N4—C14115.86 (19)N4—C14—C15122.4 (2)
Sn1—C1—H1A109.5N4—C14—H14118.8
Sn1—C1—H1B109.5C15—C14—H14118.8
H1A—C1—H1B109.5N3—C15—C14120.76 (19)
Sn1—C1—H1C109.5N3—C15—C16116.52 (18)
H1A—C1—H1C109.5C14—C15—C16122.70 (18)
H1B—C1—H1C109.5O4—C16—O3124.5 (2)
Sn1—C2—H2A109.5O4—C16—C15119.47 (19)
Sn1—C2—H2B109.5O3—C16—C15116.07 (17)
H2A—C2—H2B109.5
C2—Sn1—O1—C398.1 (2)C7—N1—C4—C50.1 (3)
C1—Sn1—O1—C363.8 (2)Sn1—N1—C4—C5173.91 (17)
O3—Sn1—O1—C3160.6 (2)C7—N1—C4—C3179.20 (18)
N3—Sn1—O1—C3163.69 (17)Sn1—N1—C4—C35.2 (2)
N1—Sn1—O1—C312.59 (18)O2—C3—C4—N1175.7 (2)
C2—Sn1—O3—C1683.58 (19)O1—C3—C4—N13.5 (3)
C1—Sn1—O3—C1684.53 (19)O2—C3—C4—C53.4 (3)
O1—Sn1—O3—C16176.92 (19)O1—C3—C4—C5177.4 (2)
N3—Sn1—O3—C161.15 (17)C6—N2—C5—C42.2 (4)
N1—Sn1—O3—C16173.35 (15)N1—C4—C5—N22.0 (4)
C2—Sn1—N1—C781.4 (2)C3—C4—C5—N2178.9 (2)
C1—Sn1—N1—C775.4 (2)C5—N2—C6—C70.7 (4)
O3—Sn1—N1—C7170.55 (17)C4—N1—C7—C61.4 (3)
O1—Sn1—N1—C7179.2 (2)Sn1—N1—C7—C6173.53 (16)
N3—Sn1—N1—C75.1 (3)N2—C6—C7—N11.2 (4)
C2—Sn1—N1—C4106.05 (15)C15—N3—C12—C131.5 (4)
C1—Sn1—N1—C497.16 (15)Sn1—N3—C12—C13175.99 (18)
O3—Sn1—N1—C41.98 (18)C14—N4—C13—C120.5 (4)
O1—Sn1—N1—C48.22 (13)N3—C12—C13—N40.0 (4)
N3—Sn1—N1—C4167.44 (13)C13—N4—C14—C150.5 (3)
C2—Sn1—N3—C1277.7 (2)C12—N3—C15—C142.4 (3)
C1—Sn1—N3—C1277.5 (2)Sn1—N3—C15—C14175.58 (16)
O3—Sn1—N3—C12178.7 (2)C12—N3—C15—C16176.3 (2)
O1—Sn1—N3—C12178.2 (2)Sn1—N3—C15—C165.6 (2)
N1—Sn1—N3—C128.5 (3)N4—C14—C15—N32.0 (3)
C2—Sn1—N3—C1599.93 (15)N4—C14—C15—C16176.7 (2)
C1—Sn1—N3—C15104.88 (15)Sn1—O3—C16—O4177.83 (17)
O3—Sn1—N3—C153.72 (13)Sn1—O3—C16—C151.4 (3)
O1—Sn1—N3—C150.6 (2)N3—C15—C16—O4174.2 (2)
N1—Sn1—N3—C15173.84 (12)C14—C15—C16—O44.6 (3)
Sn1—O1—C3—O2164.70 (18)N3—C15—C16—O35.1 (3)
Sn1—O1—C3—C414.5 (3)C14—C15—C16—O3176.11 (19)

Experimental details

Crystal data
Chemical formula[Sn(CH3)2(C5H3N2O2)2]
Mr394.95
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)9.2887 (6), 12.3253 (7), 12.6596 (7)
β (°) 103.738 (1)
V3)1407.88 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.84
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.527, 0.710
No. of measured, independent and
observed [I > 2σ(I)] reflections
8657, 3193, 2892
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.051, 1.06
No. of reflections3193
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.47

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn1—C12.097 (2)Sn1—O32.1238 (15)
Sn1—C22.095 (2)Sn1—N12.6646 (18)
Sn1—O12.1506 (16)Sn1—N32.5107 (18)
 

Acknowledgements

We thank Shahid Beheshti University for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDakternieks, D., Duthie, A., Smyth, D. R., Stapleton, C. P. D. & Tiekink, E. R. T. (2003). Organometallics, 22, 4599–4603.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1–23.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, H.-D., Wang, Q.-B. & Xue, C.-C. (2005). J. Organomet. Chem. 690, 3111–3117.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds