organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Hy­dr­oxy-5-meth­­oxy­phen­yl)-3-methyl­but-2-en-1-one

aDepartment of Chemistry, Louisiana State University, Baton Rouge LA 70803-1804 USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 1 October 2012; accepted 8 October 2012; online 13 October 2012)

The title compound, C12H14O3, is a natural product derived from the medium-sized hawthorn Crataegus persimilis ('prunifolia'). The mean plane of the butene moiety is twisted by 13.27 (7)° with respect to the that of the dioxobenzaldehyde moiety. There is an intra­molecular hydrogen bond between the hydroxyl group and the carbonyl O atom.

Related literature

For isolation from plant material, see: Castro et al. (1989[Castro, V., Tamayo-Castillo, G. & Jakupovic, J. (1989). Phytochemistry, 28, 2415-2418.]). For the synthesis, see: Camps et al. (1985[Camps, F., Coll, J., Colomina, O. & Messeguer, A. (1985). J. Heterocycl. Chem. 22, 363-368.]). For photolysis to form 4-chromanones, see: Primo et al. (1982[Primo, J., Tormo, R. & Miranda, M. A. (1982). Heterocycles, 19, 1819-1822.]). For a related structure, see: Zeller et al. (2010[Zeller, M., Sridharan, M., Rajendra Prasad, K. J. & Ngendahimana, A. (2010). Acta Cryst. E66, o297-o298.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14O3

  • Mr = 206.23

  • Monoclinic, P 21 /c

  • a = 14.027 (3) Å

  • b = 5.816 (1) Å

  • c = 12.829 (3) Å

  • β = 91.409 (8)°

  • V = 1046.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.45 × 0.37 × 0.23 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.959, Tmax = 0.979

  • 6425 measured reflections

  • 3784 independent reflections

  • 3179 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.127

  • S = 1.04

  • 3784 reflections

  • 143 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3 0.87 (2) 1.74 (2) 2.523 (1) 149 (2)

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The structure of title compound I can be described in terms of four planar moieties as defined by their constituent non-hydrogen atoms. The phenyl ring and three atoms bonded to it define the main molecular plane, with mean deviation of the defining atoms of δr.m.s. = 0.0145 (6) Å. With respect to this molecular plane, the mean plane of the carbonyl group (four atoms, δr.m.s. = 0.0044 (4) Å) and the plane of the methoxy group (three atoms) have dihedral angles of 2.50 (6)° and 4.33 (6)° respectively, while the mean plane of the butene moiety (four atoms, δr.m.s. = 0.0018 (4) Å) has dihedral angle 13.27 (7)°.

Related literature top

For isolation from plant material, see: Castro et al. (1989). For the synthesis, see: Camps et al. (1985). For photolysis to form 4-chromanones, see: Primo et al. (1982). For a related structure, see: Zeller et al. (2010).

Experimental top

Compound I was isolated as a natural product (Castro et al., 1989). It has also been synthesized (Camps et al., 1985). Suitable crystals were formed by very slow evaporation of a hexane solution over a period of three years.

Refinement top

The positional and isotropic displacement parameters of hydroxyl atom H2A were refined independently. All other H atoms were placed in calculated positions, guided by difference maps, and refined as riding. Torsional parameters for the three methyl groups were refined, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C), while H atoms attached to sp2 C atoms have C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with displacement ellipsoids at the 50% probability level.
1-(2-Hydroxy-5-methoxyphenyl)-3-methylbut-2-en-1-one top
Crystal data top
C12H14O3F(000) = 440
Mr = 206.23Dx = 1.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3442 reflections
a = 14.027 (3) Åθ = 2.5–32.6°
b = 5.816 (1) ŵ = 0.09 mm1
c = 12.829 (3) ÅT = 100 K
β = 91.409 (8)°Fragment, yellow
V = 1046.3 (4) Å30.45 × 0.37 × 0.23 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3784 independent reflections
Radiation source: sealed tube3179 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.018
Detector resolution: 9 pixels mm-1θmax = 32.6°, θmin = 3.2°
ϕ and ω scansh = 2121
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor 1997)
k = 87
Tmin = 0.959, Tmax = 0.979l = 1919
6425 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0692P)2 + 0.2297P]
where P = (Fo2 + 2Fc2)/3
3784 reflections(Δ/σ)max = 0.001
143 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.22 e Å3
0 constraints
Crystal data top
C12H14O3V = 1046.3 (4) Å3
Mr = 206.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.027 (3) ŵ = 0.09 mm1
b = 5.816 (1) ÅT = 100 K
c = 12.829 (3) Å0.45 × 0.37 × 0.23 mm
β = 91.409 (8)°
Data collection top
Nonius KappaCCD
diffractometer
3784 independent reflections
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor 1997)
3179 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.979Rint = 0.018
6425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.43 e Å3
3784 reflectionsΔρmin = 0.22 e Å3
143 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.38220 (6)1.03873 (14)0.88580 (6)0.01713 (16)
C20.31710 (6)0.89827 (14)0.93398 (6)0.01652 (15)
H20.30030.92811.00400.020*
C30.27530 (6)0.71019 (14)0.87973 (6)0.01641 (15)
C40.30238 (6)0.66752 (15)0.77617 (6)0.01796 (16)
C50.36779 (6)0.81313 (15)0.72851 (6)0.01992 (17)
H50.38530.78530.65860.024*
C60.40689 (6)0.99610 (16)0.78231 (6)0.01999 (17)
H60.45091.09440.74910.024*
C70.20366 (6)0.55840 (14)0.92711 (7)0.01901 (16)
C80.17084 (6)0.60621 (15)1.03279 (7)0.01893 (16)
H80.18970.74851.06320.023*
C90.11620 (6)0.46622 (15)1.09083 (7)0.01933 (16)
C100.08404 (7)0.54666 (17)1.19537 (7)0.02467 (19)
H10A0.10690.70371.20790.037*
H10B0.11000.44461.24980.037*
H10C0.01420.54421.19670.037*
C110.08255 (7)0.23100 (16)1.05970 (8)0.02593 (19)
H11A0.01970.24241.02510.039*
H11B0.07810.13421.12190.039*
H11C0.12790.16251.01170.039*
C120.40983 (6)1.26466 (15)1.03865 (7)0.02072 (17)
H12A0.34251.30411.04650.031*
H12B0.44971.39251.06370.031*
H12C0.42491.12631.07940.031*
O10.42786 (5)1.22263 (11)0.93148 (5)0.02247 (15)
O20.26717 (5)0.49087 (12)0.71825 (5)0.02388 (15)
H2A0.2287 (12)0.416 (3)0.7580 (14)0.052 (5)*
O30.17042 (5)0.39337 (13)0.87547 (6)0.02755 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0188 (3)0.0184 (3)0.0143 (3)0.0008 (3)0.0011 (3)0.0000 (3)
C20.0168 (3)0.0186 (3)0.0142 (3)0.0004 (3)0.0009 (3)0.0004 (3)
C30.0166 (3)0.0175 (3)0.0152 (3)0.0007 (3)0.0007 (3)0.0006 (3)
C40.0195 (3)0.0188 (3)0.0156 (3)0.0018 (3)0.0008 (3)0.0011 (3)
C50.0230 (4)0.0234 (4)0.0134 (3)0.0002 (3)0.0018 (3)0.0006 (3)
C60.0226 (4)0.0235 (4)0.0140 (3)0.0026 (3)0.0031 (3)0.0010 (3)
C70.0181 (3)0.0192 (4)0.0198 (4)0.0002 (3)0.0004 (3)0.0002 (3)
C80.0179 (3)0.0191 (3)0.0199 (4)0.0006 (3)0.0027 (3)0.0002 (3)
C90.0157 (3)0.0199 (4)0.0224 (4)0.0013 (3)0.0007 (3)0.0035 (3)
C100.0241 (4)0.0267 (4)0.0236 (4)0.0015 (3)0.0071 (3)0.0029 (3)
C110.0265 (4)0.0208 (4)0.0305 (5)0.0040 (3)0.0023 (4)0.0039 (3)
C120.0243 (4)0.0223 (4)0.0157 (3)0.0029 (3)0.0026 (3)0.0027 (3)
O10.0286 (3)0.0238 (3)0.0153 (3)0.0094 (2)0.0052 (2)0.0030 (2)
O20.0301 (3)0.0225 (3)0.0190 (3)0.0042 (3)0.0017 (3)0.0051 (2)
O30.0317 (4)0.0260 (3)0.0251 (3)0.0101 (3)0.0034 (3)0.0049 (3)
Geometric parameters (Å, º) top
C1—O11.3708 (10)C8—H80.95
C1—C21.3824 (11)C9—C111.4982 (13)
C1—C61.4023 (12)C9—C101.5003 (13)
C2—C31.4159 (11)C10—H10A0.98
C2—H20.95C10—H10B0.98
C3—C41.4127 (12)C10—H10C0.98
C3—C71.4795 (12)C11—H11A0.98
C4—O21.3540 (10)C11—H11B0.98
C4—C51.4002 (12)C11—H11C0.98
C5—C61.3751 (12)C12—O11.4251 (11)
C5—H50.95C12—H12A0.98
C6—H60.95C12—H12B0.98
C7—O31.2499 (11)C12—H12C0.98
C7—C81.4690 (12)O2—H2A0.870 (18)
C8—C91.3538 (12)
O1—C1—C2125.22 (7)C8—C9—C11125.55 (8)
O1—C1—C6114.77 (7)C8—C9—C10119.40 (8)
C2—C1—C6120.00 (8)C11—C9—C10115.05 (8)
C1—C2—C3120.46 (7)C9—C10—H10A109.5
C1—C2—H2119.8C9—C10—H10B109.5
C3—C2—H2119.8H10A—C10—H10B109.5
C4—C3—C2118.71 (7)C9—C10—H10C109.5
C4—C3—C7118.86 (7)H10A—C10—H10C109.5
C2—C3—C7122.43 (7)H10B—C10—H10C109.5
O2—C4—C5116.96 (8)C9—C11—H11A109.5
O2—C4—C3123.13 (8)C9—C11—H11B109.5
C5—C4—C3119.91 (8)H11A—C11—H11B109.5
C6—C5—C4120.43 (8)C9—C11—H11C109.5
C6—C5—H5119.8H11A—C11—H11C109.5
C4—C5—H5119.8H11B—C11—H11C109.5
C5—C6—C1120.48 (8)O1—C12—H12A109.5
C5—C6—H6119.8O1—C12—H12B109.5
C1—C6—H6119.8H12A—C12—H12B109.5
O3—C7—C8120.88 (8)O1—C12—H12C109.5
O3—C7—C3119.26 (8)H12A—C12—H12C109.5
C8—C7—C3119.85 (7)H12B—C12—H12C109.5
C9—C8—C7126.04 (8)C1—O1—C12117.01 (7)
C9—C8—H8117C4—O2—H2A106.4 (12)
C7—C8—H8117
O1—C1—C2—C3178.95 (8)C2—C1—C6—C50.92 (13)
C6—C1—C2—C30.33 (13)C4—C3—C7—O31.59 (12)
C1—C2—C3—C40.82 (12)C2—C3—C7—O3179.06 (8)
C1—C2—C3—C7178.54 (8)C4—C3—C7—C8176.96 (7)
C2—C3—C4—O2179.35 (7)C2—C3—C7—C82.39 (12)
C7—C3—C4—O21.28 (12)O3—C7—C8—C911.11 (14)
C2—C3—C4—C51.39 (12)C3—C7—C8—C9170.37 (8)
C7—C3—C4—C5177.99 (8)C7—C8—C9—C112.89 (14)
O2—C4—C5—C6179.87 (8)C7—C8—C9—C10176.50 (8)
C3—C4—C5—C60.82 (13)C2—C1—O1—C123.14 (12)
C4—C5—C6—C10.34 (13)C6—C1—O1—C12176.18 (8)
O1—C1—C6—C5178.43 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O30.87 (2)1.74 (2)2.523 (1)149 (2)

Experimental details

Crystal data
Chemical formulaC12H14O3
Mr206.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.027 (3), 5.816 (1), 12.829 (3)
β (°) 91.409 (8)
V3)1046.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.37 × 0.23
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(HKL SCALEPACK; Otwinowski & Minor 1997)
Tmin, Tmax0.959, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
6425, 3784, 3179
Rint0.018
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.127, 1.04
No. of reflections3784
No. of parameters143
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.22

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O30.87 (2)1.74 (2)2.523 (1)149 (2)
 

Footnotes

CAS Registry 84346–78–1.

Acknowledgements

The purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

References

First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationCamps, F., Coll, J., Colomina, O. & Messeguer, A. (1985). J. Heterocycl. Chem. 22, 363–368.  CrossRef CAS Google Scholar
First citationCastro, V., Tamayo-Castillo, G. & Jakupovic, J. (1989). Phytochemistry, 28, 2415–2418.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrimo, J., Tormo, R. & Miranda, M. A. (1982). Heterocycles, 19, 1819–1822.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeller, M., Sridharan, M., Rajendra Prasad, K. J. & Ngendahimana, A. (2010). Acta Cryst. E66, o297–o298.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds