organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(NB)-4-Methyl-3-pyrid­yl[N-methyl­imino­di­acetate-O,O′,N]borane

aPhysical Chemistry Department, Faculty of Chemistry, Warsaw University of, Technology, Noakowskiego 3, 00-664 Warsaw, Poland
*Correspondence e-mail: kdurka@ch.pw.edu.pl

(Received 18 September 2012; accepted 28 September 2012; online 6 October 2012)

The title compound, C11H13BN2O4, has a rigid bicyclic structure due to an intra­molecular nitro­gen–boron dative bond. The B atom is in a distorted tetra­hedron environment with a B—N bond length of 1.640 (2) Å, which is in good comparison with the values in analogues compounds. In the crystal, the mol­ecules are linked by weak C—H⋯O and C—H⋯N inter­actions, forming a three-dimensional network.

Related literature

For related structures of [N-alkyl­imino­diacetate-O,O′,N]boranes, see: Mancilla et al. (1997[Mancilla, T., Höp, H., Bravo, G. & Carrillo, L. (1997). Main Group Met. Chem. 20, 31-36.], 2005[Mancilla, T., Zamudio Rivera, L. S., Beltrán, H. I., Santillán, R. & Farfń, N. (2005). Arkivoc, iv, 366-376.]); Gillis & Burke (2008[Gillis, E. P. & Burke, M. D. (2008). J. Am. Chem. Soc. 130, 14084-14085.]); Knapp et al. (2009[Knapp, D. M., Gillis, E. P. & Burke, M. D. (2009). J. Am. Chem. Soc. 131, 6961-6963.]); Percino et al. (2009[Percino, T. M., Ancona, R. M. F. & Martinez, M. L. (2009). Polyhedron, 28, 2771-2775.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13BN2O4

  • Mr = 248.04

  • Monoclinic, P 21 /n

  • a = 7.306 (3) Å

  • b = 14.7425 (4) Å

  • c = 10.8281 (19) Å

  • β = 96.91 (4)°

  • V = 1157.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Agilent Xcalibur Opal diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Santa Clara, United States.]) Tmin = 0.910, Tmax = 0.989

  • 26273 measured reflections

  • 3993 independent reflections

  • 3148 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.147

  • S = 1.07

  • 3993 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H10A⋯O4i 0.99 2.42 3.356 (1) 158
C11—H12B⋯N1ii 0.98 2.64 3.509 (1) 149
C11—H12A⋯O4i 0.98 2.40 3.259 (1) 146
C10—H8A⋯O3iii 0.99 2.28 3.247 (1) 165
C11—H12C⋯O2iv 0.98 2.57 3.500 (1) 158
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z; (iii) -x, -y, -z+1; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Santa Clara, United States.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Boron heterocycles derived from amino acids have received considerable attention due to their utilization in organic synthesis and medicine. Boronic acids that are susceptible to degradations are protected with N-methyliminodiacetic acid (MIDA) ligand. The MIDA boronates are compatible with a wide range of common synthetic reagents, allowing them to be functionalized to create complex boronic acid derivatives (Mancilla et al., 1997, 2005; Gillis et al., 2008; Knapp et al., 2009; Percino et al., 2009). Our interest has focused on the MIDA esters of pyridineboronic acids and their structural behavior.

In the title compound, the boron atom has a tetrahedral geometry with bond angles at the B atom ranging from 99.1 (2) to 116.8 (1)°. The B—O [1.466 (2) and 1.489 (2) Å] and B—C [1.595 (2) Å] bond lengths are in the normal ranges for such compounds. The B—N bond length is equal to 1.640 (2) Å and is similar to the values found in the other structures of MIDA boronate esters. As indicated by the C1—B1—N2—C11 and C2—C2—B1—O1 torsion angles, the bicycle ring is significantly distorted and the aryl unit is twisted along C—B bond. The crystal structure is dominated by weak C—H···O and C—H···N hydrogen interactions (Table 1).

Related literature top

For related structures of [N-alkyliminodiacetate-O,O',N]boranes, see: Mancilla et al. (1997, 2005); Gillis et al. (2008); Knapp et al. (2009); Percino et al. (2009).

Experimental top

The title compound was received from Aldrich. Single crystals suitable for X-ray diffraction analysis were grown by cooling a solution of the ester (0.2 g) in diethyl ether (10 ml) and dimethyl sulfoxide (5 ml).

Refinement top

All H atoms were placed in calculated positions with C—H distances of 0.95 Å (phenyl), 0.98 Å (methyl) and 0.99 Å (methylene). They were located in difference maps and were included in the refinement in riding approximation with Uiso(phenyl and methylene H) = 1.2Ueq(C) and Uiso(methyl H) = 1.5Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed along the a axis.
(NB)-4-Methyl-3-pyridyl[N- methyliminodiacetate-O,O',N]borane top
Crystal data top
C11H13BN2O4F(000) = 520
Mr = 248.04Dx = 1.423 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ynCell parameters from 9561 reflections
a = 7.306 (3) Åθ = 1.9–32.2°
b = 14.7425 (4) ŵ = 0.11 mm1
c = 10.8281 (19) ÅT = 100 K
β = 96.91 (4)°Unshaped, colourless
V = 1157.8 (5) Å30.16 × 0.12 × 0.10 mm
Z = 4
Data collection top
Agilent Xcalibur Opal
diffractometer
3993 independent reflections
Radiation source: Enhance (Mo) X-ray Source3148 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 8.4441 pixels mm-1θmax = 32.3°, θmin = 2.3°
ω scanh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2121
Tmin = 0.910, Tmax = 0.989l = 1616
26273 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0715P)2 + 0.4349P]
where P = (Fo2 + 2Fc2)/3
3993 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C11H13BN2O4V = 1157.8 (5) Å3
Mr = 248.04Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.306 (3) ŵ = 0.11 mm1
b = 14.7425 (4) ÅT = 100 K
c = 10.8281 (19) Å0.16 × 0.12 × 0.10 mm
β = 96.91 (4)°
Data collection top
Agilent Xcalibur Opal
diffractometer
3993 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3148 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.989Rint = 0.075
26273 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.07Δρmax = 0.47 e Å3
3993 reflectionsΔρmin = 0.43 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.2305 (2)0.29350 (10)0.44416 (12)0.0241 (3)
H12A0.13110.32730.41170.036*
H12B0.29010.33220.50110.036*
H12C0.32160.27480.37500.036*
O10.10475 (13)0.14926 (6)0.64076 (9)0.0195 (2)
O20.13312 (13)0.22847 (6)0.73583 (8)0.0196 (2)
N20.15248 (15)0.21153 (7)0.51222 (9)0.0157 (2)
C20.11011 (17)0.32272 (8)0.63785 (11)0.0167 (2)
O30.20124 (15)0.04826 (7)0.50831 (11)0.0275 (2)
O40.41001 (16)0.17271 (7)0.76432 (11)0.0305 (3)
C80.04008 (19)0.15473 (9)0.43621 (12)0.0198 (3)
H10A0.02080.19270.37770.024*
H10B0.11770.10870.38820.024*
C30.06232 (18)0.40943 (9)0.67863 (12)0.0188 (2)
C90.29166 (19)0.18660 (8)0.69872 (12)0.0199 (3)
B10.01072 (19)0.23263 (9)0.63818 (12)0.0157 (2)
C100.30028 (19)0.15837 (9)0.56364 (13)0.0213 (3)
H8A0.27760.09250.55700.026*
H8B0.42260.17270.51810.026*
C40.1896 (2)0.47963 (9)0.67544 (13)0.0228 (3)
H40.16180.53840.70410.027*
C70.10090 (18)0.11005 (8)0.53041 (12)0.0189 (2)
C10.28286 (19)0.31591 (10)0.59509 (14)0.0246 (3)
H10.31650.25790.56690.029*
N10.40557 (18)0.38297 (9)0.58999 (14)0.0305 (3)
C60.1176 (2)0.43051 (10)0.72727 (17)0.0310 (3)
H6A0.19410.37570.72360.046*
H6B0.18250.47810.67620.046*
H6C0.09340.45140.81360.046*
C50.3558 (2)0.46393 (10)0.63083 (15)0.0274 (3)
H50.43930.51320.62900.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0284 (7)0.0246 (6)0.0183 (6)0.0100 (5)0.0018 (5)0.0020 (5)
O10.0217 (5)0.0160 (4)0.0201 (4)0.0042 (3)0.0009 (3)0.0005 (3)
O20.0235 (5)0.0203 (4)0.0153 (4)0.0028 (3)0.0043 (3)0.0011 (3)
N20.0161 (5)0.0157 (4)0.0153 (4)0.0022 (4)0.0014 (4)0.0016 (3)
C20.0160 (5)0.0167 (5)0.0173 (5)0.0009 (4)0.0016 (4)0.0001 (4)
O30.0270 (5)0.0197 (5)0.0372 (6)0.0076 (4)0.0092 (4)0.0022 (4)
O40.0326 (6)0.0271 (5)0.0355 (6)0.0047 (4)0.0198 (5)0.0006 (4)
C80.0228 (6)0.0207 (6)0.0164 (5)0.0042 (5)0.0043 (4)0.0027 (4)
C30.0192 (6)0.0171 (5)0.0201 (5)0.0006 (4)0.0030 (4)0.0009 (4)
C90.0227 (6)0.0147 (5)0.0234 (6)0.0006 (4)0.0080 (5)0.0012 (4)
B10.0172 (6)0.0152 (6)0.0144 (5)0.0016 (5)0.0010 (5)0.0007 (4)
C100.0186 (6)0.0204 (6)0.0257 (6)0.0026 (5)0.0052 (5)0.0057 (5)
C40.0261 (7)0.0155 (5)0.0268 (6)0.0019 (5)0.0030 (5)0.0003 (5)
C70.0195 (6)0.0148 (5)0.0231 (6)0.0007 (4)0.0053 (5)0.0001 (4)
C10.0192 (6)0.0231 (6)0.0325 (7)0.0002 (5)0.0079 (5)0.0049 (5)
N10.0219 (6)0.0286 (6)0.0431 (7)0.0049 (5)0.0120 (5)0.0048 (5)
C60.0267 (7)0.0213 (6)0.0475 (9)0.0007 (5)0.0155 (7)0.0108 (6)
C50.0254 (7)0.0232 (6)0.0344 (7)0.0073 (5)0.0062 (6)0.0010 (5)
Geometric parameters (Å, º) top
C11—N21.4924 (17)C8—H10A0.9900
C11—H12A0.9800C8—H10B0.9900
C11—H12B0.9800C3—C41.3947 (18)
C11—H12C0.9800C3—C61.506 (2)
O1—C71.3246 (16)C9—C101.5147 (19)
O1—B11.4891 (16)C10—H8A0.9900
O2—C91.3313 (17)C10—H8B0.9900
O2—B11.4660 (17)C4—C51.379 (2)
N2—C81.4884 (16)C4—H40.9500
N2—C101.4950 (18)C1—N11.3403 (19)
N2—B11.6400 (19)C1—H10.9500
C2—C11.3993 (19)N1—C51.338 (2)
C2—C31.4101 (17)C6—H6A0.9800
C2—B11.5950 (19)C6—H6B0.9800
O3—C71.2111 (16)C6—H6C0.9800
O4—C91.2009 (17)C5—H50.9500
C8—C71.511 (2)
N2—C11—H12A109.5O2—B1—C2114.98 (10)
N2—C11—H12B109.5O1—B1—C2112.01 (11)
H12A—C11—H12B109.5O2—B1—N2102.29 (10)
N2—C11—H12C109.5O1—B1—N299.13 (9)
H12A—C11—H12C109.5C2—B1—N2116.77 (10)
H12B—C11—H12C109.5N2—C10—C9105.53 (10)
C7—O1—B1113.13 (10)N2—C10—H8A110.6
C9—O2—B1112.70 (10)C9—C10—H8A110.6
C8—N2—C11112.70 (10)N2—C10—H8B110.6
C8—N2—C10112.48 (10)C9—C10—H8B110.6
C11—N2—C10110.99 (11)H8A—C10—H8B108.8
C8—N2—B1103.37 (10)C5—C4—C3120.13 (13)
C11—N2—B1115.00 (10)C5—C4—H4119.9
C10—N2—B1101.65 (9)C3—C4—H4119.9
C1—C2—C3115.84 (12)O3—C7—O1123.98 (13)
C1—C2—B1117.55 (11)O3—C7—C8125.05 (12)
C3—C2—B1126.60 (11)O1—C7—C8110.94 (11)
N2—C8—C7104.40 (10)N1—C1—C2126.53 (13)
N2—C8—H10A110.9N1—C1—H1116.7
C7—C8—H10A110.9C2—C1—H1116.7
N2—C8—H10B110.9C5—N1—C1115.76 (13)
C7—C8—H10B110.9C3—C6—H6A109.5
H10A—C8—H10B108.9C3—C6—H6B109.5
C4—C3—C2118.29 (12)H6A—C6—H6B109.5
C4—C3—C6117.93 (12)C3—C6—H6C109.5
C2—C3—C6123.78 (12)H6A—C6—H6C109.5
O4—C9—O2124.26 (13)H6B—C6—H6C109.5
O4—C9—C10125.11 (13)N1—C5—C4123.44 (13)
O2—C9—C10110.63 (11)N1—C5—H5118.3
O2—B1—O1110.20 (10)C4—C5—H5118.3
C11—N2—C8—C7150.72 (11)C10—N2—B1—O225.44 (11)
C10—N2—C8—C782.89 (13)C8—N2—B1—O129.06 (11)
B1—N2—C8—C725.95 (12)C11—N2—B1—O1152.32 (10)
C1—C2—C3—C41.18 (19)C10—N2—B1—O187.71 (11)
B1—C2—C3—C4177.63 (12)C8—N2—B1—C291.36 (12)
C1—C2—C3—C6179.70 (14)C11—N2—B1—C231.90 (15)
B1—C2—C3—C61.5 (2)C10—N2—B1—C2151.87 (11)
B1—O2—C9—O4177.44 (13)C8—N2—C10—C9134.54 (11)
B1—O2—C9—C101.95 (15)C11—N2—C10—C998.15 (12)
C9—O2—B1—O187.36 (13)B1—N2—C10—C924.61 (12)
C9—O2—B1—C2144.91 (11)O4—C9—C10—N2164.50 (13)
C9—O2—B1—N217.32 (13)O2—C9—C10—N216.11 (14)
C7—O1—B1—O2129.43 (11)C2—C3—C4—C51.3 (2)
C7—O1—B1—C2101.22 (12)C6—C3—C4—C5179.51 (14)
C7—O1—B1—N222.64 (13)B1—O1—C7—O3170.72 (12)
C1—C2—B1—O2149.59 (12)B1—O1—C7—C87.42 (15)
C3—C2—B1—O229.19 (18)N2—C8—C7—O3168.47 (12)
C1—C2—B1—O122.78 (16)N2—C8—C7—O113.41 (14)
C3—C2—B1—O1156.01 (12)C3—C2—C1—N10.4 (2)
C1—C2—B1—N290.54 (14)B1—C2—C1—N1178.55 (14)
C3—C2—B1—N290.67 (15)C2—C1—N1—C50.4 (2)
C8—N2—B1—O2142.20 (10)C1—N1—C5—C40.2 (2)
C11—N2—B1—O294.54 (12)C3—C4—C5—N10.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H10A···O4i0.992.423.356 (1)158
C11—H12B···N1ii0.982.643.509 (1)149
C11—H12A···O4i0.982.403.259 (1)146
C10—H8A···O3iii0.992.283.247 (1)165
C11—H12C···O2iv0.982.573.500 (1)158
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1, y, z; (iii) x, y, z+1; (iv) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H13BN2O4
Mr248.04
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.306 (3), 14.7425 (4), 10.8281 (19)
β (°) 96.91 (4)
V3)1157.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerAgilent Xcalibur Opal
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.910, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
26273, 3993, 3148
Rint0.075
(sin θ/λ)max1)0.751
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.147, 1.07
No. of reflections3993
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.43

Computer programs: CrysAlis PRO (Agilent, 2011), DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H10A···O4i0.992.4183.356 (1)158
C11—H12B···N1ii0.982.6353.509 (1)149
C11—H12A···O4i0.982.4033.259 (1)146
C10—H8A···O3iii0.992.2833.247 (1)165
C11—H12C···O2iv0.982.5743.500 (1)158
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1, y, z; (iii) x, y, z+1; (iv) x1/2, y+1/2, z1/2.
 

Acknowledgements

The X-ray measurements were undertaken in the Crystallographic Unit of the Physical Chemistry Laboratory at the Chemistry Department of the University of Warsaw. This work was supported by the Aldrich Chemical Co. through donation of chemicals and equipment and by the Warsaw University of Technology.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Santa Clara, United States.  Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGillis, E. P. & Burke, M. D. (2008). J. Am. Chem. Soc. 130, 14084–14085.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKnapp, D. M., Gillis, E. P. & Burke, M. D. (2009). J. Am. Chem. Soc. 131, 6961–6963.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMancilla, T., Höp, H., Bravo, G. & Carrillo, L. (1997). Main Group Met. Chem. 20, 31–36.  CrossRef CAS Google Scholar
First citationMancilla, T., Zamudio Rivera, L. S., Beltrán, H. I., Santillán, R. & Farfń, N. (2005). Arkivoc, iv, 366–376.  CrossRef Google Scholar
First citationPercino, T. M., Ancona, R. M. F. & Martinez, M. L. (2009). Polyhedron, 28, 2771–2775.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds