organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3151-o3152

2-Amino-5-methyl­pyridinium 6-oxo-1,6-di­hydro­pyridine-2-carboxyl­ate

aSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 19 September 2012; accepted 2 October 2012; online 20 October 2012)

The anion of the title salt, C6H9N2+·C6H4NO3, undergoes an enol-to-keto tautomerism during the crystallization. In the crystal structure, the cation and anion are held together by a relatively short N—H⋯O hydrogen bond, and the two anions are further connected to each other by a pair of N—H⋯O hydrogen bonds with an R22(8) ring motif, thus forming a centrosymmetric 2 + 2 aggregate. The aggregates are further linked through weak N—H⋯O and C—H⋯O hydrogen bonds, resulting a three-dimensional network.

Related literature

For details of 2-amino­pyridine and its derivatives, see: Banerjee & Murugavel (2004[Banerjee, S. & Murugavel, R. (2004). Cryst. Growth Des. 4, 545-552.]); Bis & Zaworotko (2005[Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169-1179.]); Bis et al. (2006[Bis, J. A., McLaughlin, O. L., Vishweshwar, P. & Zaworoto, M. J. (2006). Cryst. Growth Des. 6, 2648-2650.]). For details of 6-hy­droxy­picolinic acid, see: Sun et al. (2004[Sun, C. Y., Zheng, X. J. & Jin, L. P. (2004). Z. Anorg. Allg. Chem. 630, 1342-1347.]); Soares-Santos et al. (2003[Soares-Santos, P. C. R., Nogueira, H. I. S., Rocha, J., Felix, V., Drew, M. G. B., Sa Ferreira, R. A., Carlos, L. D. & Trindade, T. (2003). Polyhedron, 22, 3529-3539.]). For a related structure, see: Sawada & Ohashi (1998[Sawada, K. & Ohashi, Y. (1998). Acta Cryst. C54, 1491-1493.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C6H4NO3

  • Mr = 247.25

  • Monoclinic, P 21 /c

  • a = 11.7093 (6) Å

  • b = 10.4594 (6) Å

  • c = 11.4590 (6) Å

  • β = 119.203 (1)°

  • V = 1225.03 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.45 × 0.35 × 0.23 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.978

  • 15984 measured reflections

  • 4430 independent reflections

  • 3745 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.116

  • S = 1.02

  • 4430 reflections

  • 180 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.899 (15) 2.011 (15) 2.8922 (10) 166.0 (16)
N3—H2N3⋯O1 0.900 (16) 2.245 (19) 3.0373 (12) 146.7 (15)
N3—H2N3⋯O3i 0.900 (16) 2.408 (16) 3.0916 (11) 133.0 (15)
N3—H1N3⋯O2ii 0.938 (15) 1.884 (16) 2.8071 (12) 167.7 (15)
N2—H1N2⋯O3i 0.954 (16) 1.686 (18) 2.6206 (11) 165.7 (17)
C3—H3A⋯O1iii 0.95 2.33 3.2598 (11) 166
C9—H9A⋯O1iv 0.95 2.54 3.3750 (12) 146
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2-Aminopyridine and its derivatives are some of the most frequently used synthons in supramolecular chemistry based on hydrogen bonds (Banerjee & Murugavel, 2004; Bis & Zaworotko, 2005; Bis et al., 2006). 6-Hydroxypicolinic acid has interesting characteristics: firstly, it was characterized by a similar enol-keto tautomerism due to the labile hydrogen atom of –OH group in α-position migrating easily to the basic pyridine N atom; secondly, the multiple coordination sites such as the carbonyl oxygen, the amide nitrogen and carboxylate oxygen atoms are able to coordinate with various metal ions (Sun et al., 2004; Soares-Santos et al., 2003). In order to study some interesting hydrogen bonding interactions of this compound, the synthesis and structure of the title salt is presented here.

The asymmetric unit of the title compound contains a 2-amino-5-methylpyridinium cation and a 6-oxo-1,6-dihydropyridine-2-carboxylate anion (Fig. 1). The 2-amino-5-methylpyridinium cation is planar, with a maximum deviation of 0.004 (1) Å for atoms N2 and C9. In the cation, a wider than normal angle [C11—N2—C12 = 122.96 (8)°] is subtended at the protonated N2 atom. The bond lengths (Allen et al., 1987) and angles are normal. The anion exists in the keto-enol tautomerism of the –CONH moiety. Similar form was also observed in the crystal structure of 2-oxo-1,2-dihydropyridine-6-carboxylic acid (Sawada & Ohashi, 1998).

In the crystal (Fig. 2), the 6-oxo-1,6-dihydropyridine-2-carboxylate anion are centrosymmetrically paired through a pair of N1—H1N1···O1i hydrogen bonds (symmetry code in Table 1) to form an R22(8) (Bernstein et al., 1995) ring motif. These motifs are further self-organized through N—H···O hydrogen bonds to generate an array of four hydrogen bonds, resulting in the rings with R22(8), sandwiched by two R22(7). One of the O atoms of the carboxylate group acts as an acceptors of bifurcated N2—H1N2···O3i and N3—H2N3···O3i hydrogen bonds (symmetry code in Table 1) with the protonated pyridine and amine N atoms of the cation, forming an R21(6) ring motif. The crystal structure are further stabilized by strong N3—H1N3···O2ii and weak C3—H3A···O1iii and C9—H9A···O1iv hydrogen bonds (symmetry codes in Table 1), resulting a three-dimensional network.

Related literature top

For details of 2-aminopyridine and its derivatives, see: Banerjee & Murugavel (2004); Bis & Zaworotko (2005); Bis et al. (2006). For details of 6-hydroxypicolinic acid, see: Sun et al. (2004); Soares-Santos et al. (2003). For a related structure, see: Sawada & Ohashi (1998). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Hot methanol solutions (20 ml) of 2-amino5-methylpyridine (54 mg, Aldrich) and 6-Hydroxypicolinic acid (69 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound (I) appeared after a few days.

Refinement top

N-bound H atoms were located in a difference Fourier map and refined freely [refined N—H distances 0.899 (15), 0.954 (16), 0.900 (16) and 0.938 (15) Å]. The remaining H atoms were positioned geometrically (C—H= 0.95–0.98 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating group model was used for the methyl group. In the final refinement, four outliers were omitted (-1 3 2, -4 6 5,-1 1 1 and -4 6 4).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the c axis.
2-Amino-5-methylpyridinium 6-oxo-1,6-dihydropyridine-2-carboxylate top
Crystal data top
C6H9N2+·C6H4NO3F(000) = 520
Mr = 247.25Dx = 1.341 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6176 reflections
a = 11.7093 (6) Åθ = 3.6–32.6°
b = 10.4594 (6) ŵ = 0.10 mm1
c = 11.4590 (6) ÅT = 100 K
β = 119.203 (1)°Block, colourless
V = 1225.03 (11) Å30.45 × 0.35 × 0.23 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4430 independent reflections
Radiation source: fine-focus sealed tube3745 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 32.6°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.957, Tmax = 0.978k = 1515
15984 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0661P)2 + 0.2292P]
where P = (Fo2 + 2Fc2)/3
4430 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C6H9N2+·C6H4NO3V = 1225.03 (11) Å3
Mr = 247.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7093 (6) ŵ = 0.10 mm1
b = 10.4594 (6) ÅT = 100 K
c = 11.4590 (6) Å0.45 × 0.35 × 0.23 mm
β = 119.203 (1)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4430 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3745 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.978Rint = 0.027
15984 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.43 e Å3
4430 reflectionsΔρmin = 0.21 e Å3
180 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37734 (6)0.60282 (6)0.39711 (6)0.01806 (13)
O20.80810 (7)0.48126 (7)0.29773 (7)0.02633 (15)
O30.79587 (6)0.45930 (6)0.48584 (7)0.02282 (14)
N10.55569 (6)0.55843 (7)0.37336 (7)0.01512 (13)
N20.02845 (7)0.72276 (7)0.43791 (7)0.01818 (14)
N30.14291 (7)0.77377 (8)0.32695 (8)0.02345 (16)
C10.43630 (7)0.61584 (7)0.33157 (8)0.01518 (14)
C20.38707 (8)0.68852 (8)0.21019 (8)0.02096 (16)
H2A0.30640.73280.17760.025*
C30.45395 (9)0.69519 (10)0.14089 (9)0.02493 (18)
H3A0.41950.74390.06080.030*
C40.57443 (9)0.63000 (9)0.18740 (9)0.02318 (17)
H4A0.62030.63260.13820.028*
C50.62317 (8)0.56351 (8)0.30428 (8)0.01706 (15)
C60.75338 (8)0.49530 (8)0.36664 (9)0.01855 (15)
C70.25015 (10)0.86990 (10)0.46610 (12)0.0311 (2)
H7A0.24900.79980.52340.047*
H7B0.33610.87370.38560.047*
H7C0.23280.95090.51490.047*
C80.14653 (8)0.84727 (8)0.42693 (9)0.02107 (16)
C90.12821 (9)0.93128 (9)0.34046 (10)0.02358 (17)
H9A0.18341.00390.30550.028*
C100.03306 (9)0.91053 (9)0.30608 (9)0.02217 (17)
H10A0.02190.96850.24860.027*
C110.04861 (7)0.80162 (8)0.35711 (8)0.01760 (15)
C120.06528 (8)0.74369 (8)0.47303 (8)0.01970 (16)
H12A0.07460.68490.53100.024*
H1N10.5904 (14)0.5129 (15)0.4496 (14)0.033 (3)*
H2N30.1961 (15)0.7063 (15)0.3644 (15)0.037 (4)*
H1N30.1663 (14)0.8348 (15)0.2824 (14)0.034 (3)*
H1N20.0830 (15)0.6489 (15)0.4686 (16)0.040 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0171 (3)0.0218 (3)0.0192 (3)0.0032 (2)0.0119 (2)0.0018 (2)
O20.0276 (3)0.0276 (3)0.0359 (4)0.0033 (2)0.0250 (3)0.0001 (3)
O30.0197 (3)0.0248 (3)0.0278 (3)0.0060 (2)0.0146 (2)0.0074 (2)
N10.0151 (3)0.0164 (3)0.0162 (3)0.0019 (2)0.0095 (2)0.0018 (2)
N20.0169 (3)0.0183 (3)0.0205 (3)0.0015 (2)0.0101 (2)0.0027 (2)
N30.0218 (3)0.0263 (4)0.0279 (4)0.0065 (3)0.0166 (3)0.0067 (3)
C10.0146 (3)0.0155 (3)0.0166 (3)0.0011 (2)0.0084 (3)0.0002 (2)
C20.0188 (3)0.0228 (4)0.0218 (4)0.0046 (3)0.0104 (3)0.0068 (3)
C30.0245 (4)0.0297 (4)0.0229 (4)0.0045 (3)0.0134 (3)0.0097 (3)
C40.0245 (4)0.0278 (4)0.0234 (4)0.0029 (3)0.0165 (3)0.0062 (3)
C50.0178 (3)0.0177 (3)0.0201 (3)0.0008 (2)0.0128 (3)0.0003 (3)
C60.0184 (3)0.0156 (3)0.0269 (4)0.0005 (2)0.0152 (3)0.0003 (3)
C70.0284 (4)0.0308 (5)0.0453 (6)0.0001 (4)0.0269 (4)0.0044 (4)
C80.0190 (3)0.0219 (4)0.0259 (4)0.0008 (3)0.0138 (3)0.0025 (3)
C90.0213 (4)0.0218 (4)0.0293 (4)0.0058 (3)0.0137 (3)0.0036 (3)
C100.0223 (4)0.0217 (4)0.0246 (4)0.0053 (3)0.0131 (3)0.0063 (3)
C110.0160 (3)0.0194 (3)0.0182 (3)0.0009 (2)0.0090 (3)0.0009 (3)
C120.0195 (3)0.0210 (4)0.0215 (4)0.0020 (3)0.0122 (3)0.0002 (3)
Geometric parameters (Å, º) top
O1—C11.2511 (9)C3—H3A0.9500
O2—C61.2447 (9)C4—C51.3628 (12)
O3—C61.2617 (11)C4—H4A0.9500
N1—C51.3654 (9)C5—C61.5104 (11)
N1—C11.3751 (10)C7—C81.5036 (12)
N1—H1N10.899 (15)C7—H7A0.9800
N2—C111.3440 (11)C7—H7B0.9800
N2—C121.3585 (10)C7—H7C0.9800
N2—H1N20.954 (16)C8—C121.3665 (12)
N3—C111.3402 (10)C8—C91.4169 (13)
N3—H2N30.900 (16)C9—C101.3681 (12)
N3—H1N30.938 (15)C9—H9A0.9500
C1—C21.4361 (11)C10—C111.4172 (11)
C2—C31.3622 (12)C10—H10A0.9500
C2—H2A0.9500C12—H12A0.9500
C3—C41.4161 (12)
C5—N1—C1123.96 (7)O2—C6—O3126.76 (8)
C5—N1—H1N1118.0 (9)O2—C6—C5117.96 (8)
C1—N1—H1N1118.0 (9)O3—C6—C5115.27 (7)
C11—N2—C12122.96 (7)C8—C7—H7A109.5
C11—N2—H1N2116.1 (9)C8—C7—H7B109.5
C12—N2—H1N2121.0 (9)H7A—C7—H7B109.5
C11—N3—H2N3120.9 (9)C8—C7—H7C109.5
C11—N3—H1N3119.2 (9)H7A—C7—H7C109.5
H2N3—N3—H1N3118.4 (13)H7B—C7—H7C109.5
O1—C1—N1120.55 (7)C12—C8—C9116.59 (8)
O1—C1—C2124.11 (7)C12—C8—C7121.36 (8)
N1—C1—C2115.33 (7)C9—C8—C7122.05 (8)
C3—C2—C1121.23 (7)C10—C9—C8121.70 (8)
C3—C2—H2A119.4C10—C9—H9A119.2
C1—C2—H2A119.4C8—C9—H9A119.2
C2—C3—C4120.43 (8)C9—C10—C11119.28 (8)
C2—C3—H3A119.8C9—C10—H10A120.4
C4—C3—H3A119.8C11—C10—H10A120.4
C5—C4—C3118.57 (7)N3—C11—N2119.21 (8)
C5—C4—H4A120.7N3—C11—C10122.91 (8)
C3—C4—H4A120.7N2—C11—C10117.88 (7)
C4—C5—N1120.42 (7)N2—C12—C8121.60 (8)
C4—C5—C6123.23 (7)N2—C12—H12A119.2
N1—C5—C6116.33 (7)C8—C12—H12A119.2
C5—N1—C1—O1176.99 (7)C4—C5—C6—O3167.03 (9)
C5—N1—C1—C22.64 (11)N1—C5—C6—O311.36 (11)
O1—C1—C2—C3177.60 (9)C12—C8—C9—C100.71 (14)
N1—C1—C2—C32.02 (12)C7—C8—C9—C10179.51 (9)
C1—C2—C3—C40.03 (15)C8—C9—C10—C110.60 (14)
C2—C3—C4—C51.64 (15)C12—N2—C11—N3179.75 (8)
C3—C4—C5—N11.11 (14)C12—N2—C11—C100.56 (12)
C3—C4—C5—C6177.22 (8)C9—C10—C11—N3179.19 (9)
C1—N1—C5—C41.13 (13)C9—C10—C11—N20.03 (13)
C1—N1—C5—C6179.56 (7)C11—N2—C12—C80.45 (13)
C4—C5—C6—O212.31 (13)C9—C8—C12—N20.19 (13)
N1—C5—C6—O2169.31 (8)C7—C8—C12—N2179.97 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.899 (15)2.011 (15)2.8922 (10)166.0 (16)
N3—H2N3···O10.900 (16)2.245 (19)3.0373 (12)146.7 (15)
N3—H2N3···O3i0.900 (16)2.408 (16)3.0916 (11)133.0 (15)
N3—H1N3···O2ii0.938 (15)1.884 (16)2.8071 (12)167.7 (15)
N2—H1N2···O3i0.954 (16)1.686 (18)2.6206 (11)165.7 (17)
C3—H3A···O1iii0.952.333.2598 (11)166
C9—H9A···O1iv0.952.543.3750 (12)146
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C6H4NO3
Mr247.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.7093 (6), 10.4594 (6), 11.4590 (6)
β (°) 119.203 (1)
V3)1225.03 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.45 × 0.35 × 0.23
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.957, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
15984, 4430, 3745
Rint0.027
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.116, 1.02
No. of reflections4430
No. of parameters180
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.899 (15)2.011 (15)2.8922 (10)166.0 (16)
N3—H2N3···O10.900 (16)2.245 (19)3.0373 (12)146.7 (15)
N3—H2N3···O3i0.900 (16)2.408 (16)3.0916 (11)133.0 (15)
N3—H1N3···O2ii0.938 (15)1.884 (16)2.8071 (12)167.7 (15)
N2—H1N2···O3i0.954 (16)1.686 (18)2.6206 (11)165.7 (17)
C3—H3A···O1iii0.952.333.2598 (11)166
C9—H9A···O1iv0.952.543.3750 (12)146
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for research facilities and the Fundamental Research Grant Scheme (FRGS) No. 203/PFIZIK/6711171 to conduct this work. KT thanks The Academy of Sciences for the Developing World and USM for a TWAS–USM fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBanerjee, S. & Murugavel, R. (2004). Cryst. Growth Des. 4, 545–552.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBis, J. A., McLaughlin, O. L., Vishweshwar, P. & Zaworoto, M. J. (2006). Cryst. Growth Des. 6, 2648–2650.  Web of Science CSD CrossRef CAS Google Scholar
First citationBis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169–1179.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSawada, K. & Ohashi, Y. (1998). Acta Cryst. C54, 1491–1493.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoares-Santos, P. C. R., Nogueira, H. I. S., Rocha, J., Felix, V., Drew, M. G. B., Sa Ferreira, R. A., Carlos, L. D. & Trindade, T. (2003). Polyhedron, 22, 3529–3539.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, C. Y., Zheng, X. J. & Jin, L. P. (2004). Z. Anorg. Allg. Chem. 630, 1342–1347.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3151-o3152
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds