organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[2-(5-Bromo-2-morpholin-4-ylpyrim­idin-4-ylsulfan­yl)-4-meth­­oxy­phen­yl]-2,4,6-tri­methyl­benzene­sulfonamide

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, bPG Department of Studies in Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysore 570 025, India, and cX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: mas@physics.uni-mysore.ac.in

(Received 25 September 2012; accepted 27 September 2012; online 3 October 2012)

In the title compound, C24H27BrN4O4S2, the mol­ecule is twisted at the sulfonyl S atom with a C—S(O2)—N(H)—C torsion angle of 62.6 (3)°. The benzene rings bridged by the sulfonamide group are tilted to each other by a dihedral angle of 60.6 (1)°. The dihedral angle between the sulfur-bridged pyrimidine and benzene rings is 62.7 (1)°. The morpholine ring adopts a chair conformation. The mol­ecular conformation is stabilized by a weak intra­molecular ππ stacking inter­action between the pyrimidine and the 2,4,6-trimethyl­benzene rings [centroid–centroid distance = 3.793 (2) Å]. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into a chain along the b axis.

Related literature

For related structures of sulfonamides, see: Rodrigues et al. (2011[Rodrigues, V. Z., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o2891.]); Akkurt et al. (2011[Akkurt, M., Mariam, I., Naseer, I., Khan, I. U. & Sharif, S. (2011). Acta Cryst. E67, o186.]); Kant et al. (2012[Kant, R., Gupta, V. K., Kapoor, K., Kumar, M., Mallesha, L. & Sridhar, M. A. (2012). Acta Cryst. E68, o2590-o2591.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.]).

[Scheme 1]

Experimental

Crystal data
  • C24H27BrN4O4S2

  • Mr = 579.53

  • Monoclinic, P 21 /n

  • a = 10.2583 (4) Å

  • b = 17.4727 (6) Å

  • c = 14.4375 (7) Å

  • β = 97.199 (4)°

  • V = 2567.38 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.80 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.526, Tmax = 0.697

  • 19056 measured reflections

  • 5023 independent reflections

  • 3359 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.105

  • S = 1.02

  • 5023 reflections

  • 321 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O25i 0.86 2.09 2.890 (4) 155
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Bond lengths and angles in the title compound (Fig. 1) have normal values (Allen et al., 1987) and are comparable with the similar crystal structures (Rodrigues et al., 2011; Akkurt et al., 2011; Kant et al., 2012). The molecule is twisted at the S atom with the C2—S1—N1—C10 torsion angle of 62.6 (3)°. The morpholine ring is exhibiting chair conformation (asymmetry parameters are: [ΔC2(N22—C27) = 2.51; ΔCs(C24—C27) = 0.92] (Duax & Norton, 1975). The benzene C1–C6 and C10–C15 rings are tilted relative to each other by 60.6 (1)° and the dihedral angle between the sulfur bridged pyrimidine and benzene rings is 62.7 (1) °. The molecular conformation is stabilized by a weak intramolecular ππ stacking interaction between the pyrimidine C16/N17/C18/N19/C20/C21 ring (centroid Cg1) and the 2,4,6-trimethyl benzene C1–C6 ring (centroid Cg2) [Cg1···Cg2 3.793 (2) Å, perpendicular distance of Cg1 on the C1–C6 ring 3.5103 (13) Å and perpendicular distance of Cg2 on the C16/N17/C18/N19/C20/C21 ring 3.3905 (12) Å]. In the crystal, molecules are linked into chains by N1—H1···O25 hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For related structures of sulfonamides, see: Rodrigues et al. (2011); Akkurt et al. (2011); Kant et al. (2012). For bond-length data, see: Allen et al. (1987). For ring conformations, see: Duax & Norton (1975).

Experimental top

The reaction of N-[2-(5-bromo-2-morpholin-4-yl-pyrimidin-4-ylsulfanyl)-4-methoxy-phenyl]-2,4,6-trimethyl-benzenesulfonamide (5.29 g, 0.01 mol) with morpholine (0.88 g, 0.01 mol) were carried out in the presence of triethylamine and the reaction mixture was allowed to stir at room temperature for 6–7 h in dry dichloromethane. The progress of the reaction was monitored by TLC. Upon completion, the solvent was removed under reduced pressure and residue was extracted with ethyl acetate. The compound was purified by successive recrystallization from methanol (yield 83%, m.p. 454–456 K).

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C/N atoms, with C—H = 0.93–0.97 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with the atom-labeling scheme. The displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A molecular packing view of the title compound down the a axis, showing intermolecular interactions (dashed lines). For clarity, H atoms not involved in the hydrogen bonds have been omitted.
N-[2-(5-Bromo-2-morpholin-4-ylpyrimidin-4-ylsulfanyl)-4-methoxyphenyl]- 2,4,6-trimethylbenzenesulfonamide top
Crystal data top
C24H27BrN4O4S2F(000) = 1192
Mr = 579.53Dx = 1.499 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6670 reflections
a = 10.2583 (4) Åθ = 3.7–29.0°
b = 17.4727 (6) ŵ = 1.80 mm1
c = 14.4375 (7) ÅT = 293 K
β = 97.199 (4)°Block, brown
V = 2567.38 (18) Å30.3 × 0.2 × 0.2 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
5023 independent reflections
Radiation source: fine-focus sealed tube3359 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.7°
ω scanh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 2121
Tmin = 0.526, Tmax = 0.697l = 1717
19056 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0338P)2 + 1.6315P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5023 reflectionsΔρmax = 0.31 e Å3
321 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0057 (4)
Crystal data top
C24H27BrN4O4S2V = 2567.38 (18) Å3
Mr = 579.53Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.2583 (4) ŵ = 1.80 mm1
b = 17.4727 (6) ÅT = 293 K
c = 14.4375 (7) Å0.3 × 0.2 × 0.2 mm
β = 97.199 (4)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
5023 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3359 reflections with I > 2σ(I)
Tmin = 0.526, Tmax = 0.697Rint = 0.045
19056 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.02Δρmax = 0.31 e Å3
5023 reflectionsΔρmin = 0.39 e Å3
321 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.02664 (4)0.10295 (2)0.23807 (3)0.07706 (19)
S10.50455 (9)0.24940 (6)0.00299 (6)0.0566 (3)
S20.74901 (8)0.19238 (5)0.24649 (6)0.0472 (2)
N10.5008 (2)0.22120 (16)0.11087 (18)0.0487 (7)
H10.48480.17390.12150.058*
O10.4808 (3)0.18139 (17)0.05220 (17)0.0788 (8)
O20.4152 (2)0.31164 (17)0.01409 (18)0.0774 (8)
O30.5639 (3)0.42389 (15)0.41145 (19)0.0704 (7)
C10.6672 (3)0.28269 (18)0.0041 (2)0.0430 (8)
C20.6972 (4)0.36148 (19)0.0014 (2)0.0508 (9)
C30.8256 (4)0.3831 (2)0.0079 (2)0.0562 (9)
H30.84550.43500.00710.067*
C40.9252 (3)0.3316 (2)0.0154 (2)0.0535 (9)
C50.8941 (3)0.2553 (2)0.0154 (2)0.0527 (9)
H50.96080.21970.01870.063*
C60.7666 (3)0.22861 (18)0.0106 (2)0.0460 (8)
C70.7498 (4)0.14289 (19)0.0125 (3)0.0681 (11)
H7A0.70780.12740.07270.102*
H7B0.69660.12780.03460.102*
H7C0.83440.11880.00050.102*
C81.0642 (4)0.3581 (3)0.0207 (3)0.0791 (12)
H8A1.08260.35550.08420.119*
H8B1.12440.32570.01760.119*
H8C1.07400.41000.00110.119*
C90.6004 (4)0.4257 (2)0.0093 (3)0.0787 (13)
H9A0.53210.42490.04270.118*
H9B0.64530.47390.01100.118*
H9C0.56250.41870.06620.118*
C100.5231 (3)0.27276 (18)0.1873 (2)0.0412 (7)
C110.4332 (3)0.3308 (2)0.1984 (2)0.0532 (9)
H110.35940.33600.15440.064*
C120.4508 (3)0.3801 (2)0.2724 (3)0.0553 (9)
H120.39020.41910.27740.066*
C130.5583 (3)0.3723 (2)0.3399 (2)0.0503 (8)
C140.6476 (3)0.31466 (18)0.3324 (2)0.0446 (8)
H140.71830.30820.37870.054*
C150.6321 (3)0.26588 (18)0.2552 (2)0.0409 (7)
C160.8899 (3)0.24701 (19)0.2337 (2)0.0404 (7)
N170.8793 (2)0.32166 (15)0.22635 (17)0.0414 (6)
C180.9896 (3)0.3618 (2)0.2209 (2)0.0490 (8)
N191.1113 (3)0.33241 (18)0.2232 (2)0.0611 (8)
C201.1185 (3)0.2570 (2)0.2294 (3)0.0614 (10)
H201.20060.23410.23130.074*
C211.0110 (3)0.2104 (2)0.2331 (2)0.0504 (8)
N220.9747 (3)0.43869 (16)0.2097 (2)0.0575 (8)
C230.8513 (3)0.4755 (2)0.2241 (3)0.0623 (10)
H23A0.78060.43820.21730.075*
H23B0.83030.51540.17800.075*
C240.8650 (4)0.5089 (2)0.3196 (3)0.0726 (12)
H24A0.78340.53350.33000.087*
H24B0.88290.46850.36550.087*
O250.9689 (3)0.56335 (15)0.3307 (2)0.0848 (9)
C250.6630 (4)0.4143 (2)0.4887 (3)0.0773 (12)
H25A0.65440.36470.51580.116*
H25B0.65350.45310.53450.116*
H25C0.74790.41870.46790.116*
C261.0905 (4)0.5289 (2)0.3180 (3)0.0808 (14)
H26A1.11280.49090.36630.097*
H26B1.15890.56760.32410.097*
C271.0850 (3)0.4917 (2)0.2245 (3)0.0679 (11)
H27A1.07560.53060.17610.082*
H27B1.16630.46430.22040.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0695 (3)0.0623 (3)0.1013 (4)0.0199 (2)0.0181 (2)0.0000 (2)
S10.0426 (5)0.0840 (7)0.0398 (5)0.0032 (5)0.0080 (4)0.0043 (5)
S20.0379 (4)0.0491 (5)0.0532 (5)0.0001 (4)0.0004 (4)0.0006 (4)
N10.0435 (16)0.0588 (17)0.0423 (16)0.0127 (14)0.0004 (12)0.0017 (14)
O10.0723 (18)0.108 (2)0.0522 (16)0.0252 (16)0.0088 (13)0.0267 (16)
O20.0485 (15)0.118 (2)0.0611 (17)0.0205 (15)0.0109 (12)0.0180 (16)
O30.0646 (17)0.0829 (18)0.0653 (18)0.0025 (14)0.0142 (14)0.0251 (15)
C10.0422 (18)0.056 (2)0.0294 (16)0.0062 (16)0.0000 (14)0.0014 (15)
C20.062 (2)0.048 (2)0.043 (2)0.0115 (17)0.0059 (17)0.0018 (16)
C30.072 (3)0.046 (2)0.053 (2)0.0036 (19)0.0172 (19)0.0023 (17)
C40.056 (2)0.062 (2)0.045 (2)0.0007 (19)0.0162 (16)0.0007 (18)
C50.053 (2)0.054 (2)0.052 (2)0.0127 (17)0.0136 (17)0.0006 (17)
C60.057 (2)0.0443 (18)0.0370 (18)0.0048 (16)0.0079 (15)0.0056 (15)
C70.080 (3)0.050 (2)0.078 (3)0.002 (2)0.024 (2)0.011 (2)
C80.068 (3)0.090 (3)0.083 (3)0.013 (2)0.024 (2)0.002 (2)
C90.079 (3)0.061 (2)0.097 (3)0.027 (2)0.014 (2)0.000 (2)
C100.0296 (16)0.0559 (19)0.0381 (17)0.0055 (15)0.0044 (13)0.0027 (16)
C110.0321 (18)0.072 (2)0.054 (2)0.0021 (17)0.0027 (15)0.006 (2)
C120.040 (2)0.067 (2)0.061 (2)0.0101 (17)0.0152 (17)0.003 (2)
C130.043 (2)0.061 (2)0.049 (2)0.0048 (17)0.0149 (16)0.0064 (18)
C140.0362 (17)0.062 (2)0.0356 (18)0.0064 (16)0.0027 (14)0.0004 (16)
C150.0289 (16)0.0535 (19)0.0403 (18)0.0021 (14)0.0043 (13)0.0047 (15)
C160.0340 (17)0.056 (2)0.0294 (16)0.0019 (15)0.0008 (12)0.0041 (15)
N170.0294 (14)0.0520 (17)0.0424 (15)0.0012 (12)0.0025 (11)0.0056 (13)
C180.0378 (19)0.058 (2)0.050 (2)0.0022 (17)0.0043 (15)0.0052 (17)
N190.0327 (16)0.068 (2)0.084 (2)0.0034 (15)0.0117 (15)0.0023 (18)
C200.0334 (19)0.074 (3)0.079 (3)0.0102 (19)0.0130 (18)0.001 (2)
C210.0423 (19)0.058 (2)0.051 (2)0.0100 (17)0.0057 (15)0.0047 (17)
N220.0324 (15)0.0558 (18)0.085 (2)0.0048 (14)0.0119 (14)0.0099 (16)
C230.041 (2)0.049 (2)0.096 (3)0.0003 (17)0.007 (2)0.002 (2)
C240.078 (3)0.054 (2)0.092 (3)0.013 (2)0.033 (2)0.010 (2)
O250.081 (2)0.0571 (17)0.113 (3)0.0073 (16)0.0002 (18)0.0187 (16)
C250.079 (3)0.100 (3)0.055 (2)0.021 (2)0.014 (2)0.026 (2)
C260.065 (3)0.057 (2)0.112 (4)0.005 (2)0.022 (3)0.001 (3)
C270.040 (2)0.061 (2)0.104 (3)0.0081 (18)0.014 (2)0.008 (2)
Geometric parameters (Å, º) top
Br1—C211.885 (3)C11—C121.368 (5)
S1—O21.424 (3)C11—H110.9300
S1—O11.434 (3)C12—C131.384 (5)
S1—N11.639 (3)C12—H120.9300
S1—C11.782 (3)C13—C141.376 (4)
S2—C161.761 (3)C14—C151.396 (4)
S2—C151.772 (3)C14—H140.9300
N1—C101.421 (4)C16—N171.312 (4)
N1—H10.8600C16—C211.399 (4)
O3—C131.367 (4)N17—C181.342 (4)
O3—C251.421 (5)C18—N191.347 (4)
C1—C61.402 (4)C18—N221.359 (4)
C1—C21.410 (4)N19—C201.322 (4)
C2—C31.385 (5)C20—C211.377 (5)
C2—C91.519 (5)C20—H200.9300
C3—C41.375 (5)N22—C271.457 (4)
C3—H30.9300N22—C231.458 (4)
C4—C51.371 (5)C23—C241.487 (5)
C4—C81.511 (5)C23—H23A0.9700
C5—C61.398 (5)C23—H23B0.9700
C5—H50.9300C24—O251.423 (5)
C6—C71.508 (4)C24—H24A0.9700
C7—H7A0.9600C24—H24B0.9700
C7—H7B0.9600O25—C261.417 (5)
C7—H7C0.9600C25—H25A0.9600
C8—H8A0.9600C25—H25B0.9600
C8—H8B0.9600C25—H25C0.9600
C8—H8C0.9600C26—C271.493 (6)
C9—H9A0.9600C26—H26A0.9700
C9—H9B0.9600C26—H26B0.9700
C9—H9C0.9600C27—H27A0.9700
C10—C111.393 (4)C27—H27B0.9700
C10—C151.396 (4)
O2—S1—O1118.40 (17)O3—C13—C12115.0 (3)
O2—S1—N1107.62 (16)C14—C13—C12119.8 (3)
O1—S1—N1104.85 (16)C13—C14—C15120.0 (3)
O2—S1—C1109.14 (16)C13—C14—H14120.0
O1—S1—C1109.49 (16)C15—C14—H14120.0
N1—S1—C1106.67 (13)C14—C15—C10120.6 (3)
C16—S2—C15100.73 (15)C14—C15—S2119.2 (2)
C10—N1—S1121.8 (2)C10—C15—S2120.1 (2)
C10—N1—H1119.1N17—C16—C21121.2 (3)
S1—N1—H1119.1N17—C16—S2119.1 (2)
C13—O3—C25118.3 (3)C21—C16—S2119.6 (3)
C6—C1—C2120.1 (3)C16—N17—C18117.6 (3)
C6—C1—S1118.6 (2)N17—C18—N19125.8 (3)
C2—C1—S1121.3 (2)N17—C18—N22116.2 (3)
C3—C2—C1118.0 (3)N19—C18—N22118.1 (3)
C3—C2—C9116.5 (3)C20—N19—C18115.2 (3)
C1—C2—C9125.5 (3)N19—C20—C21123.6 (3)
C4—C3—C2123.3 (3)N19—C20—H20118.2
C4—C3—H3118.3C21—C20—H20118.2
C2—C3—H3118.3C20—C21—C16116.5 (3)
C5—C4—C3117.4 (3)C20—C21—Br1121.7 (3)
C5—C4—C8121.3 (3)C16—C21—Br1121.8 (3)
C3—C4—C8121.3 (3)C18—N22—C27122.5 (3)
C4—C5—C6122.9 (3)C18—N22—C23120.3 (3)
C4—C5—H5118.6C27—N22—C23111.8 (3)
C6—C5—H5118.6N22—C23—C24108.8 (3)
C5—C6—C1118.1 (3)N22—C23—H23A109.9
C5—C6—C7115.8 (3)C24—C23—H23A109.9
C1—C6—C7126.0 (3)N22—C23—H23B109.9
C6—C7—H7A109.5C24—C23—H23B109.9
C6—C7—H7B109.5H23A—C23—H23B108.3
H7A—C7—H7B109.5O25—C24—C23110.5 (3)
C6—C7—H7C109.5O25—C24—H24A109.6
H7A—C7—H7C109.5C23—C24—H24A109.6
H7B—C7—H7C109.5O25—C24—H24B109.6
C4—C8—H8A109.5C23—C24—H24B109.6
C4—C8—H8B109.5H24A—C24—H24B108.1
H8A—C8—H8B109.5C26—O25—C24111.1 (3)
C4—C8—H8C109.5O3—C25—H25A109.5
H8A—C8—H8C109.5O3—C25—H25B109.5
H8B—C8—H8C109.5H25A—C25—H25B109.5
C2—C9—H9A109.5O3—C25—H25C109.5
C2—C9—H9B109.5H25A—C25—H25C109.5
H9A—C9—H9B109.5H25B—C25—H25C109.5
C2—C9—H9C109.5O25—C26—C27111.6 (3)
H9A—C9—H9C109.5O25—C26—H26A109.3
H9B—C9—H9C109.5C27—C26—H26A109.3
C11—C10—C15117.7 (3)O25—C26—H26B109.3
C11—C10—N1120.4 (3)C27—C26—H26B109.3
C15—C10—N1121.9 (3)H26A—C26—H26B108.0
C12—C11—C10121.6 (3)N22—C27—C26110.5 (3)
C12—C11—H11119.2N22—C27—H27A109.6
C10—C11—H11119.2C26—C27—H27A109.6
C11—C12—C13120.2 (3)N22—C27—H27B109.6
C11—C12—H12119.9C26—C27—H27B109.6
C13—C12—H12119.9H27A—C27—H27B108.1
O3—C13—C14125.2 (3)
O2—S1—N1—C1054.4 (3)C13—C14—C15—C103.0 (5)
O1—S1—N1—C10178.7 (2)C13—C14—C15—S2179.5 (2)
C1—S1—N1—C1062.6 (3)C11—C10—C15—C141.5 (4)
O2—S1—C1—C6165.8 (2)N1—C10—C15—C14176.3 (3)
O1—S1—C1—C634.8 (3)C11—C10—C15—S2179.0 (2)
N1—S1—C1—C678.2 (3)N1—C10—C15—S21.2 (4)
O2—S1—C1—C215.5 (3)C16—S2—C15—C1465.8 (3)
O1—S1—C1—C2146.6 (3)C16—S2—C15—C10116.7 (3)
N1—S1—C1—C2100.5 (3)C15—S2—C16—N174.9 (3)
C6—C1—C2—C31.8 (5)C15—S2—C16—C21174.0 (3)
S1—C1—C2—C3179.6 (2)C21—C16—N17—C181.8 (4)
C6—C1—C2—C9177.5 (3)S2—C16—N17—C18177.1 (2)
S1—C1—C2—C91.2 (5)C16—N17—C18—N190.7 (5)
C1—C2—C3—C41.0 (5)C16—N17—C18—N22177.5 (3)
C9—C2—C3—C4178.3 (3)N17—C18—N19—C201.6 (5)
C2—C3—C4—C50.7 (5)N22—C18—N19—C20176.6 (3)
C2—C3—C4—C8179.0 (3)C18—N19—C20—C210.1 (6)
C3—C4—C5—C61.8 (5)N19—C20—C21—C162.4 (5)
C8—C4—C5—C6180.0 (3)N19—C20—C21—Br1178.1 (3)
C4—C5—C6—C11.0 (5)N17—C16—C21—C203.3 (5)
C4—C5—C6—C7179.3 (3)S2—C16—C21—C20175.6 (3)
C2—C1—C6—C50.8 (5)N17—C16—C21—Br1177.2 (2)
S1—C1—C6—C5179.5 (2)S2—C16—C21—Br13.9 (4)
C2—C1—C6—C7178.9 (3)N17—C18—N22—C27165.2 (3)
S1—C1—C6—C70.2 (4)N19—C18—N22—C2716.4 (5)
S1—N1—C10—C1167.5 (4)N17—C18—N22—C2313.2 (5)
S1—N1—C10—C15114.8 (3)N19—C18—N22—C23168.4 (3)
C15—C10—C11—C120.7 (5)C18—N22—C23—C2498.4 (4)
N1—C10—C11—C12178.5 (3)C27—N22—C23—C2456.4 (4)
C10—C11—C12—C131.4 (5)N22—C23—C24—O2559.2 (4)
C25—O3—C13—C145.5 (5)C23—C24—O25—C2660.5 (4)
C25—O3—C13—C12173.0 (3)C24—O25—C26—C2757.3 (5)
C11—C12—C13—O3178.6 (3)C18—N22—C27—C26100.5 (4)
C11—C12—C13—C140.1 (5)C23—N22—C27—C2653.6 (4)
O3—C13—C14—C15179.3 (3)O25—C26—C27—N2253.4 (4)
C12—C13—C14—C152.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O25i0.862.092.890 (4)155
Symmetry code: (i) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H27BrN4O4S2
Mr579.53
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.2583 (4), 17.4727 (6), 14.4375 (7)
β (°) 97.199 (4)
V3)2567.38 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.80
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.526, 0.697
No. of measured, independent and
observed [I > 2σ(I)] reflections
19056, 5023, 3359
Rint0.045
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.105, 1.02
No. of reflections5023
No. of parameters321
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.39

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O25i0.862.092.890 (4)155
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

Acknowledgements

MK acknowledges the help of Bahubali College of Engin­eering, Shravanabelagola for his research work. RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

References

First citationAkkurt, M., Mariam, I., Naseer, I., Khan, I. U. & Sharif, S. (2011). Acta Cryst. E67, o186.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKant, R., Gupta, V. K., Kapoor, K., Kumar, M., Mallesha, L. & Sridhar, M. A. (2012). Acta Cryst. E68, o2590–o2591.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRodrigues, V. Z., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o2891.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds