organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3196-o3197

2-Amino-5-methyl­pyridinium 2-amino­benzoate

aSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 3 October 2012; accepted 17 October 2012; online 24 October 2012)

In the 2-amino­benzoate anion of the title salt, C6H9N2+·C7H6NO2, an intra­molecular N—H⋯O hydrogen bond is observed. The dihedral angle between the ring and the CO2 group is 8.41 (13)°. In the crystal, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxyl­ate O atoms via a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. The ion pairs are further connected via N—H⋯O hydrogen bonds, resulting in a donor–donor–acceptor–acceptor (DDAA) array of quadruple hydrogen bonds. The crystal structure also features a weak N—H⋯O hydrogen bond and a C—H⋯π inter­action, resulting in a three-dimensional network.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For details of hydrogen bonding, see: Jeffrey (1997[Jeffrey, G. A. (1997). In An Introduction of Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). In Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.]). For related structures, see: Nahringbauer & Kvick (1977[Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902-2905.]); Hemamalini & Fun (2010a[Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o936-o937.],b[Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o623-o624.]); Bis & Zaworotko (2005[Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169-1179.]); Thanigaimani et al. (2012[Thanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o3195.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For hydrogen-bonding patterns in organic salts, see: Baskar Raj et al. (2003[Baskar Raj, S., Stanley, N., Muthiah, P. T., Bocelli, G., Olla', R. & Cantoni, A. (2003). Cryst. Growth Des. 3, 567-571.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C7H6NO2

  • Mr = 245.28

  • Monoclinic, P 21 /c

  • a = 9.2394 (8) Å

  • b = 13.9200 (11) Å

  • c = 12.1514 (8) Å

  • β = 129.850 (4)°

  • V = 1199.82 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.35 × 0.33 × 0.14 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.987

  • 11650 measured reflections

  • 2707 independent reflections

  • 2361 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.101

  • S = 1.07

  • 2707 reflections

  • 184 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O2 0.92 (2) 1.97 (2) 2.6734 (18) 131.8 (15)
N2—H1⋯O1i 0.926 (18) 1.982 (18) 2.8561 (14) 157 (2)
N3—H2⋯O1ii 0.897 (17) 2.159 (18) 3.0445 (14) 168.7 (14)
N1—H4⋯O2iii 0.959 (18) 1.723 (18) 2.6776 (13) 172.7 (17)
N2—H5⋯O1iii 0.933 (17) 1.899 (18) 2.8305 (14) 176.8 (16)
C1—H1ACg1 0.95 2.58 3.5094 (13) 165
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). The are often involved in hydrogen-bond interactions (Jeffrey, 1997; Scheiner, 1997). The crystal structures of 2-amino-5-methylpyridine (Nahringbauer & Kvick, 1977), 2-amino-5-methylpyridinium 4-hydroxybenzoate (Hemamalini & Fun, 2010a), 2-amino-5-methylpyridinium 3-aminobenzoate (Hemamalini & Fun, 2010b) and 2-amino-5-methylpyridinium benzoate (Bis & Zaworotko, 2005) have been reported. In order to study some interesting hydrogen bonding interactions, the synthesis and structure of the title compound, (I), is presented here.

The asymmetric unit (Fig. 1) contains one 2-amino-5-methylpyridinium cation and one 2-aminobenzoate anion. In the 2-amino-5-methylpyridinium cation, a wider than normal angle [C1—N1—C5 = 122.86 (13)°] is subtended at the protonated N1 atom. The 2-amino-5-methylpyridinium cation is essentially planar, with a maximum deviation of 0.001 (1) Å for atom C2. The bond lengths (Allen et al., 1987) and angles are normal. In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of intermolecular N1—H4···O2iii and N2—H5···O1iii hydrogen bonds (symmetry code in Table 1), forming an R22(8) (Bernstein et al., 1995) ring motif. These motifs are centrosymmetrically paired via N2—H1···O1i hydrogen bonds (symmetry code in Table 1), forming a complementary donor-donor-acceptor-acceptor (DDAA) array (Baskar Raj et al., 2003). These arrays are further connected via N3—H2···O1ii hydrogen bonds (symmetry code in Table 1), resulting a three-dimensional network. There is a typical intramolecular N3—H3···O2 hydrogen bond in the 2-aminobenzoate anion, (graph-set notation S6). The crystal structure is further stabilized by a weak C—H···π interaction (Table 1) involving the C7–C12 (centroid Cg1) ring.

Related literature top

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For details of hydrogen bonding, see: Jeffrey (1997); Scheiner (1997). For related structures, see: Nahringbauer & Kvick (1977); Hemamalini & Fun (2010a,b); Bis & Zaworotko (2005); Thanigaimani et al. (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995). For hydrogen-bonding patterns in organic salts, see: Baskar Raj et al. (2003). For bond-length data, see: Allen et al. (1987). For stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Hot methanol solutions (20 ml) of 2-amino-5-methylpyridine (54 mg, Aldrich) and 2-aminobenzoic acid (34 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound (I) appeared after a few days.

Refinement top

N-bound H Atoms were located in a difference Fourier maps and refined freely [refined N—H distances 0.959 (18), 0.926 (18), 0.933 (17), 0.897 (17) and 0.923 (18) Å]. The remaining hydrogen atoms were positioned geometrically (C—H = 0.95–0.98 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating group model was used for the methyl group. In the final refinement, eleven outliers were omitted (-4 5 5, -1 4 5, 0 6 6, 4 6 3, 1 6 5, 0 1 1, 3 6 4, 1 4 4, -4 6 7, -1 6 6 and -3 6 7).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
2-Amino-5-methylpyridinium 2-aminobenzoate top
Crystal data top
C6H9N2+·C7H6NO2F(000) = 520
Mr = 245.28Dx = 1.358 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4117 reflections
a = 9.2394 (8) Åθ = 2.6–32.5°
b = 13.9200 (11) ŵ = 0.09 mm1
c = 12.1514 (8) ÅT = 100 K
β = 129.850 (4)°Block, pink
V = 1199.82 (16) Å30.35 × 0.33 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
2707 independent reflections
Radiation source: fine-focus sealed tube2361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.968, Tmax = 0.987k = 1818
11650 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.4478P]
where P = (Fo2 + 2Fc2)/3
2707 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C6H9N2+·C7H6NO2V = 1199.82 (16) Å3
Mr = 245.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2394 (8) ŵ = 0.09 mm1
b = 13.9200 (11) ÅT = 100 K
c = 12.1514 (8) Å0.35 × 0.33 × 0.14 mm
β = 129.850 (4)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
2707 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2361 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.987Rint = 0.031
11650 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.27 e Å3
2707 reflectionsΔρmin = 0.24 e Å3
184 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.05463 (13)0.58465 (7)0.37647 (10)0.0151 (2)
N20.25399 (14)0.50164 (8)0.16340 (12)0.0204 (2)
C10.11839 (16)0.60745 (8)0.50265 (12)0.0151 (2)
H1A0.12740.65490.56290.018*
C20.27885 (15)0.56356 (8)0.54419 (12)0.0155 (2)
C30.25605 (16)0.49221 (8)0.45170 (13)0.0171 (2)
H3A0.36390.45860.47840.020*
C40.08252 (16)0.47011 (9)0.32426 (13)0.0177 (3)
H4A0.07110.42250.26310.021*
C50.07917 (16)0.51858 (8)0.28449 (12)0.0159 (2)
C60.47064 (16)0.59045 (9)0.68135 (13)0.0196 (3)
H6A0.45740.61810.74870.029*
H6B0.52890.63780.66070.029*
H6C0.55020.53300.72380.029*
O10.43909 (11)0.88549 (6)0.58761 (9)0.0185 (2)
O20.63811 (11)0.83318 (6)0.81350 (9)0.0196 (2)
N30.50078 (14)0.75894 (8)0.93299 (11)0.0194 (2)
C70.12951 (16)0.86387 (9)0.57403 (13)0.0182 (2)
H7A0.11690.89840.50080.022*
C80.03024 (16)0.84480 (9)0.55754 (13)0.0205 (3)
H8A0.15070.86580.47470.025*
C90.01034 (16)0.79390 (9)0.66560 (13)0.0194 (3)
H9A0.11900.77880.65500.023*
C100.16495 (16)0.76523 (9)0.78755 (13)0.0171 (2)
H10A0.17510.73100.85990.021*
C110.32976 (15)0.78581 (8)0.80692 (12)0.0149 (2)
C120.31006 (15)0.83401 (8)0.69541 (12)0.0147 (2)
C130.47372 (15)0.85226 (8)0.69945 (12)0.0150 (2)
H10.280 (2)0.4597 (12)0.0936 (19)0.032 (4)*
H20.500 (2)0.7164 (12)0.9882 (18)0.027 (4)*
H30.605 (2)0.7676 (13)0.9397 (18)0.034 (4)*
H40.165 (2)0.6175 (13)0.3487 (19)0.038 (5)*
H50.354 (2)0.5383 (12)0.1417 (18)0.031 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0141 (5)0.0158 (5)0.0159 (5)0.0000 (4)0.0099 (4)0.0003 (4)
N20.0149 (5)0.0239 (5)0.0183 (5)0.0009 (4)0.0088 (4)0.0060 (4)
C10.0171 (5)0.0140 (5)0.0147 (5)0.0024 (4)0.0104 (5)0.0017 (4)
C20.0150 (5)0.0156 (5)0.0153 (5)0.0013 (4)0.0094 (5)0.0012 (4)
C30.0158 (5)0.0169 (5)0.0201 (6)0.0007 (4)0.0123 (5)0.0013 (5)
C40.0190 (6)0.0167 (5)0.0191 (6)0.0009 (4)0.0130 (5)0.0028 (5)
C50.0163 (5)0.0162 (5)0.0156 (5)0.0018 (4)0.0105 (5)0.0002 (4)
C60.0156 (5)0.0200 (6)0.0184 (6)0.0007 (4)0.0087 (5)0.0018 (5)
O10.0187 (4)0.0220 (4)0.0151 (4)0.0006 (3)0.0109 (4)0.0014 (3)
O20.0132 (4)0.0241 (5)0.0180 (4)0.0006 (3)0.0084 (4)0.0046 (3)
N30.0150 (5)0.0256 (5)0.0152 (5)0.0005 (4)0.0085 (4)0.0043 (4)
C70.0179 (5)0.0189 (6)0.0146 (5)0.0009 (4)0.0090 (5)0.0006 (5)
C80.0135 (5)0.0250 (6)0.0164 (6)0.0020 (4)0.0065 (5)0.0009 (5)
C90.0148 (5)0.0219 (6)0.0216 (6)0.0031 (4)0.0117 (5)0.0053 (5)
C100.0185 (5)0.0173 (6)0.0176 (6)0.0032 (4)0.0125 (5)0.0025 (4)
C110.0147 (5)0.0138 (5)0.0136 (5)0.0010 (4)0.0079 (5)0.0027 (4)
C120.0139 (5)0.0142 (5)0.0144 (5)0.0017 (4)0.0084 (5)0.0025 (4)
C130.0156 (5)0.0124 (5)0.0153 (5)0.0010 (4)0.0091 (5)0.0013 (4)
Geometric parameters (Å, º) top
N1—C51.3498 (15)O1—C131.2672 (14)
N1—C11.3660 (14)O2—C131.2651 (14)
N1—H40.959 (18)N3—C111.3717 (15)
N2—C51.3356 (15)N3—H20.897 (17)
N2—H10.926 (18)N3—H30.923 (18)
N2—H50.933 (17)C7—C81.3821 (17)
C1—C21.3664 (16)C7—C121.4064 (16)
C1—H1A0.9500C7—H7A0.9500
C2—C31.4108 (17)C8—C91.3966 (18)
C2—C61.5077 (16)C8—H8A0.9500
C3—C41.3716 (16)C9—C101.3793 (16)
C3—H3A0.9500C9—H9A0.9500
C4—C51.4125 (16)C10—C111.4131 (16)
C4—H4A0.9500C10—H10A0.9500
C6—H6A0.9800C11—C121.4153 (16)
C6—H6B0.9800C12—C131.5029 (15)
C6—H6C0.9800
C5—N1—C1122.86 (10)H6B—C6—H6C109.5
C5—N1—H4117.1 (11)C11—N3—H2117.4 (10)
C1—N1—H4120.0 (11)C11—N3—H3117.0 (11)
C5—N2—H1122.7 (10)H2—N3—H3121.8 (15)
C5—N2—H5119.6 (10)C8—C7—C12122.28 (11)
H1—N2—H5117.2 (15)C8—C7—H7A118.9
N1—C1—C2121.54 (11)C12—C7—H7A118.9
N1—C1—H1A119.2C7—C8—C9118.44 (11)
C2—C1—H1A119.2C7—C8—H8A120.8
C1—C2—C3116.59 (10)C9—C8—H8A120.8
C1—C2—C6121.72 (11)C10—C9—C8120.90 (11)
C3—C2—C6121.68 (10)C10—C9—H9A119.6
C4—C3—C2121.81 (11)C8—C9—H9A119.6
C4—C3—H3A119.1C9—C10—C11121.22 (11)
C2—C3—H3A119.1C9—C10—H10A119.4
C3—C4—C5119.61 (11)C11—C10—H10A119.4
C3—C4—H4A120.2N3—C11—C10118.55 (11)
C5—C4—H4A120.2N3—C11—C12123.23 (10)
N2—C5—N1118.38 (10)C10—C11—C12118.22 (10)
N2—C5—C4124.05 (11)C7—C12—C11118.86 (10)
N1—C5—C4117.55 (10)C7—C12—C13118.47 (10)
C2—C6—H6A109.5C11—C12—C13122.65 (10)
C2—C6—H6B109.5O2—C13—O1123.53 (10)
H6A—C6—H6B109.5O2—C13—C12118.48 (10)
C2—C6—H6C109.5O1—C13—C12117.99 (10)
H6A—C6—H6C109.5
C5—N1—C1—C20.49 (17)C9—C10—C11—N3177.35 (11)
N1—C1—C2—C31.33 (17)C9—C10—C11—C122.10 (17)
N1—C1—C2—C6178.25 (11)C8—C7—C12—C112.35 (18)
C1—C2—C3—C42.07 (17)C8—C7—C12—C13175.98 (11)
C6—C2—C3—C4177.52 (11)N3—C11—C12—C7176.04 (11)
C2—C3—C4—C51.02 (18)C10—C11—C12—C73.38 (16)
C1—N1—C5—N2179.68 (11)N3—C11—C12—C135.71 (18)
C1—N1—C5—C41.58 (16)C10—C11—C12—C13174.87 (10)
C3—C4—C5—N2179.47 (11)C7—C12—C13—O2173.86 (10)
C3—C4—C5—N10.81 (17)C11—C12—C13—O27.88 (17)
C12—C7—C8—C90.13 (18)C7—C12—C13—O16.58 (16)
C7—C8—C9—C101.51 (18)C11—C12—C13—O1171.69 (10)
C8—C9—C10—C110.38 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···O20.92 (2)1.97 (2)2.6734 (18)131.8 (15)
N2—H1···O1i0.926 (18)1.982 (18)2.8561 (14)157 (2)
N3—H2···O1ii0.897 (17)2.159 (18)3.0445 (14)168.7 (14)
N1—H4···O2iii0.959 (18)1.723 (18)2.6776 (13)172.7 (17)
N2—H5···O1iii0.933 (17)1.899 (18)2.8305 (14)176.8 (16)
C1—H1A···Cg10.952.583.5094 (13)165
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C7H6NO2
Mr245.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.2394 (8), 13.9200 (11), 12.1514 (8)
β (°) 129.850 (4)
V3)1199.82 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.33 × 0.14
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.968, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
11650, 2707, 2361
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.07
No. of reflections2707
No. of parameters184
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···O20.92 (2)1.97 (2)2.6734 (18)131.8 (15)
N2—H1···O1i0.926 (18)1.982 (18)2.8561 (14)157 (2)
N3—H2···O1ii0.897 (17)2.159 (18)3.0445 (14)168.7 (14)
N1—H4···O2iii0.959 (18)1.723 (18)2.6776 (13)172.7 (17)
N2—H5···O1iii0.933 (17)1.899 (18)2.8305 (14)176.8 (16)
C1—H1A···Cg10.952.583.5094 (13)165
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x1, y+3/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and Fundamental Research Grant Scheme (FRGS) No. 203/PFIZIK/6711171 to conduct this work. KT thanks The Academy of Sciences for the Developing World and USM for a TWAS–USM fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBaskar Raj, S., Stanley, N., Muthiah, P. T., Bocelli, G., Olla', R. & Cantoni, A. (2003). Cryst. Growth Des. 3, 567–571.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des. 5, 1169–1179.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o936–o937.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o623–o624.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). In An Introduction of Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationNahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationScheiner, S. (1997). In Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o3195.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3196-o3197
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds