organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

L-Tyrosine iso­propyl ester

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, 4-72 Colombia, and bInstitute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
*Correspondence e-mail: arquevedop@unal.edu.co

(Received 4 October 2012; accepted 10 October 2012; online 20 October 2012)

The title compound, C12H17NO3, adopts a folded conformation with a C—C(NH2)—C(=O)—O torsion angle of −95.9 (2)°. In the crystal, mol­ecules are linked by an O—H⋯N hydrogen bond, forming helical chains along the b-axis direction. Weak N—H⋯O and C—H⋯O hydrogen bonds are observed between the chains.

Related literature

For information about tyrosine alkyl esters as prodrugs and the structure and inter­molecular inter­actions of L-tyrosine methyl ester compared to L-tyrosine and its ethyl and n-butyl esters, see: Nicolaï et al. (2011[Nicolaï, B., Mahé, N., Céolin, R., Rietveld, I., Barrio, M. & Tamarit, J.-L. (2011). Struct. Chem. 22, 649-659.]). For the n-butyl analogue, see: Qian et al. (2006[Qian, S.-S., Zhu, H.-L. & Tiekink, E. R. T. (2006). Acta Cryst. E62, o882-o884.]). For macrocyclization of tyrosine alkyl esters with formaldehyde, see: Quevedo & Moreno-Murillo (2009[Quevedo, R. & Moreno-Murillo, B. (2009). Tetrahedron Lett. 50, 936-938.]); Nuñez-Dallos et al. (2012[Nuñez-Dallos, N., Reyes, A. & Quevedo, R. (2012). Tetrahedron Lett. 53, 530-533.]). For a related structure of tyramine, see: Quevedo et al. (2012[Quevedo, R., Nuñez-Dallos, N., Wurst, K. & Duarte-Ruiz, A. (2012). J. Mol. Struct. 1029, 175-179.]).

[Scheme 1]

Experimental

Crystal data
  • C12H17NO3

  • Mr = 223.27

  • Orthorhombic, P 21 21 21

  • a = 5.4539 (1) Å

  • b = 14.0521 (3) Å

  • c = 16.5163 (4) Å

  • V = 1265.79 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 233 K

  • 0.4 × 0.3 × 0.2 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 8375 measured reflections

  • 1318 independent reflections

  • 1271 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.099

  • S = 1.07

  • 1318 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯N1i 0.97 (4) 1.78 (4) 2.736 (3) 167 (3)
N1—H1N⋯O3ii 0.88 (2) 2.27 (2) 3.106 (2) 157 (2)
N1—H2N⋯O3iii 0.89 (3) 2.46 (3) 3.336 (3) 171 (2)
C2—H2⋯O1iv 0.99 2.37 3.314 (3) 159
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x+1, y, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

L-Tyrosine alkyl esters are used as prodrugs for L-tyrosine due to these esters are more lipophilic and absorbed faster than L-tyrosine. In addition, they are hydrolyzed under physiological conditions (Nicolaï et al., 2011). The crystal structures for a number of tyrosine esters have been determined: methyl, ethyl (Nicolaï et al., 2011) and n-butyl esters (Qian et al., 2006). Previous computational and spectroscopic studies of L-tyrosine isopropyl ester have suggested that the macrocyclization process with formaldehyde can be explained by the formation of a template in solution through intermolecular hydrogen bonds between the amino and the phenolic hydroxyl groups on adjacent molecules of L-tyrosine derivatives (Quevedo & Moreno-Murillo, 2009; Nuñez-Dallos et al., 2012). We report here for the first time the crystal structure of L-tyrosine isopropyl ester.

The molecular structure of the title compound is shown in Fig. 1. The molecule adopts a folded conformation called U-shaped or scorpion conformation, as evidenced in the C1—C2—C3—C4 torsion angle of 58.2 (3)°. Despite the adoption of this conformation, there is no evidence for significant intramolecular C—H···π interactions. In terms of overall conformation, the structure of the title compound resembles that of the n-butyl (Qian et al., 2006) and ethyl analogues (Nicolaï et al., 2011). The crystal packing is stabilized by strong hydrogen bonds between the hydroxyl of the phenol group and the N-atom of the amine group (Fig. 2). Furthermore, molecules are connected into a three-dimensional array via N1—H1N···O3, N1—H2N···O3 and C2—H2···O1 intermolecular hydrogen-bonding interactions; see Table 1 for geometric parameters and symmetry operations.

Related literature top

For information about tyrosine alkyl esters as prodrugs and the structure and intermolecular interactions of L-tyrosine methyl ester compared to L-tyrosine and its ethyl and n-butyl esters, see: Nicolaï et al. (2011). For the n-butyl analogue, see: Qian et al. (2006). For macrocyclization of tyrosine alkyl esters with formaldehyde, see: Quevedo & Moreno-Murillo (2009); Nuñez-Dallos et al. (2012). For a related structure of tyramine, see: Quevedo et al. (2012).

Experimental top

Concentrated sulfuric acid (8 ml) was added to a suspension of L-tyrosine (10.00 g, 55.19 mmol) in isopropyl alcohol (40 ml). The mixture was heated at reflux and allowed to stir for 24 h. Then the reaction mixture was cooled to room temperature and placed into ice-cold water. The pH was brought to ~7 with concentrated ammonia, and isopropyl alcohol (40 ml) was added later to the reaction mixture. Precipitated ammonium sulfate was filtered off and washed with isopropyl alcohol (3×10 ml). The filtrate was concentrated under reduced pressure to a volume of 30 ml and single crystals were obtained by slow evaporation at room temperature. The title compound formed colorless prisms (5.50 g, 45%). m.p. 121–122 °C.

1H NMR (400 MHz, CDCl3) δ 7.03 (d, J = 8.4 Hz, 2H), 6.69 (d, J = 8.4 Hz, 2H), 5.03 (hept, J = 6.3 Hz, 1H), 3.65 (dd, J = 7.7, 5.4 Hz, 1H), 3.01 (dd, J = 13.7, 5.3 Hz, 1H), 2.79 (dd, J = 13.8, 7.7 Hz, 1H), 1.25 (d, J = 6.2 Hz, 3H), 1.22 (d, J = 6.3 Hz, 3H). 13C NMR (100 MHz, CD3OD) δ 21.9, 22.0, 41.1, 57.0, 69.7, 116.3, 128.9, 131.4, 157.4, 175.6. HRMS (ESI), m/z calcd for [C12H17NO3+H]+ 224.1281; found: 224.1279 [M+H]+, 246.1094 [M+Na]+, 222.1088 [M—H]-.

Refinement top

The H atoms on N1 and O3 were located in a difference map and refined isotropically [refined distances: N—H = 0.88 (2) and 0.89 (3) Å, and O—H = 0.97 (4) Å]. All H atoms bound to C atoms were refined using a riding model, with C—H = 0.94–0.98 Å and Uiso(H) = 1.2 or 1.5 times Ueq(C). In the absence of significant anomalous scattering effects, Friedel pairs have been merged in the final refinement.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The O—H···N hydrogen bonds are shown as dashed cyan lines.
Isopropyl (2S)-2-amino-3-(4-hydroxyphenyl)propanoate top
Crystal data top
C12H17NO3F(000) = 480
Mr = 223.27Dx = 1.172 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 13069 reflections
a = 5.4539 (1) Åθ = 1.0–25.0°
b = 14.0521 (3) ŵ = 0.08 mm1
c = 16.5163 (4) ÅT = 233 K
V = 1265.79 (5) Å3Prism, colorless
Z = 40.4 × 0.3 × 0.2 mm
Data collection top
Nonius KappaCCD
diffractometer
1271 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
Detector resolution: 9.1 pixels mm-1h = 66
ϕ and ω scansk = 1616
8375 measured reflectionsl = 1919
1318 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.054P)2 + 0.2704P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1318 reflectionsΔρmax = 0.17 e Å3
158 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.059 (14)
Crystal data top
C12H17NO3V = 1265.79 (5) Å3
Mr = 223.27Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.4539 (1) ŵ = 0.08 mm1
b = 14.0521 (3) ÅT = 233 K
c = 16.5163 (4) Å0.4 × 0.3 × 0.2 mm
Data collection top
Nonius KappaCCD
diffractometer
1271 reflections with I > 2σ(I)
8375 measured reflectionsRint = 0.020
1318 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.17 e Å3
1318 reflectionsΔρmin = 0.15 e Å3
158 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2421 (4)0.74601 (12)0.07769 (10)0.0395 (4)
H1N0.241 (4)0.7383 (17)0.0246 (14)0.049 (6)*
H2N0.096 (6)0.7704 (18)0.0881 (16)0.056 (8)*
O10.1561 (3)0.61052 (12)0.07928 (14)0.0699 (6)
H3O0.483 (7)0.311 (2)0.404 (2)0.089 (10)*
O20.1284 (3)0.49667 (10)0.08581 (10)0.0539 (5)
O30.3192 (3)0.33815 (11)0.40495 (10)0.0528 (5)
C10.0508 (4)0.58592 (14)0.09087 (12)0.0392 (5)
C20.2565 (4)0.65246 (13)0.11620 (11)0.0364 (5)
H20.41560.62280.10230.044*
C30.2457 (5)0.66834 (15)0.20858 (12)0.0495 (6)
H3A0.37920.71140.22390.059*
H3B0.09100.70040.22160.059*
C40.2644 (4)0.57967 (14)0.25969 (11)0.0418 (5)
C50.4658 (5)0.52015 (17)0.25389 (15)0.0501 (6)
H50.59120.53510.21700.060*
C60.4873 (4)0.43895 (16)0.30120 (14)0.0469 (6)
H60.62460.39900.29550.056*
C70.3068 (4)0.41695 (14)0.35669 (12)0.0401 (5)
C80.1058 (4)0.47529 (16)0.36372 (14)0.0479 (6)
H80.01830.46070.40120.057*
C90.0861 (4)0.55580 (16)0.31541 (14)0.0475 (6)
H90.05240.59510.32080.057*
C100.0553 (6)0.42135 (18)0.07362 (19)0.0698 (8)
H100.22080.44710.08490.084*
C110.0012 (13)0.3444 (2)0.1322 (2)0.144 (2)
H11A0.00040.37010.18670.216*
H11B0.16170.31810.12030.216*
H11C0.12150.29470.12780.216*
C120.0438 (11)0.3886 (3)0.0106 (2)0.135 (2)
H12A0.08760.44050.04650.203*
H12B0.15740.33620.01820.203*
H12C0.12140.36730.02280.203*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0479 (11)0.0363 (9)0.0344 (9)0.0041 (8)0.0001 (8)0.0030 (7)
O10.0357 (9)0.0493 (9)0.1246 (16)0.0022 (8)0.0005 (11)0.0016 (10)
O20.0557 (9)0.0332 (7)0.0729 (11)0.0001 (7)0.0022 (9)0.0069 (7)
O30.0521 (10)0.0499 (9)0.0564 (9)0.0071 (8)0.0075 (8)0.0213 (7)
C10.0385 (11)0.0358 (10)0.0433 (10)0.0010 (9)0.0073 (9)0.0020 (9)
C20.0382 (10)0.0325 (9)0.0385 (9)0.0019 (9)0.0011 (9)0.0007 (7)
C30.0715 (15)0.0377 (10)0.0394 (10)0.0042 (12)0.0017 (11)0.0012 (8)
C40.0503 (12)0.0400 (10)0.0351 (9)0.0007 (10)0.0045 (9)0.0012 (8)
C50.0470 (12)0.0575 (13)0.0457 (11)0.0040 (11)0.0071 (10)0.0144 (11)
C60.0420 (12)0.0513 (12)0.0474 (11)0.0083 (11)0.0019 (10)0.0103 (10)
C70.0418 (11)0.0403 (10)0.0382 (10)0.0027 (10)0.0033 (9)0.0051 (9)
C80.0439 (12)0.0503 (12)0.0495 (12)0.0010 (11)0.0075 (10)0.0089 (10)
C90.0445 (12)0.0483 (12)0.0498 (12)0.0079 (10)0.0025 (10)0.0029 (10)
C100.0762 (19)0.0401 (12)0.093 (2)0.0166 (13)0.0027 (17)0.0061 (13)
C110.268 (7)0.081 (2)0.082 (2)0.073 (4)0.018 (4)0.0200 (19)
C120.230 (6)0.109 (3)0.0674 (19)0.105 (4)0.022 (3)0.0063 (19)
Geometric parameters (Å, º) top
N1—C21.462 (2)C5—H50.9400
N1—H1N0.88 (2)C6—C71.380 (3)
N1—H2N0.89 (3)C6—H60.9400
O1—C11.196 (3)C7—C81.374 (3)
O2—C11.326 (2)C8—C91.388 (3)
O2—C101.471 (3)C8—H80.9400
O3—C71.366 (2)C9—H90.9400
O3—H3O0.97 (4)C10—C121.467 (5)
C1—C21.519 (3)C10—C111.483 (5)
C2—C31.543 (3)C10—H100.9900
C2—H20.9900C11—H11A0.9700
C3—C41.508 (3)C11—H11B0.9700
C3—H3A0.9800C11—H11C0.9700
C3—H3B0.9800C12—H12A0.9700
C4—C91.380 (3)C12—H12B0.9700
C4—C51.384 (3)C12—H12C0.9700
C5—C61.388 (3)
C2—N1—H1N108.7 (15)C5—C6—H6120.1
C2—N1—H2N108.1 (17)O3—C7—C8118.29 (18)
H1N—N1—H2N103 (2)O3—C7—C6122.25 (19)
C1—O2—C10118.1 (2)C8—C7—C6119.46 (18)
C7—O3—H3O111 (2)C7—C8—C9120.0 (2)
O1—C1—O2124.4 (2)C7—C8—H8120.0
O1—C1—C2124.3 (2)C9—C8—H8120.0
O2—C1—C2111.33 (18)C4—C9—C8121.8 (2)
N1—C2—C1113.20 (17)C4—C9—H9119.1
N1—C2—C3107.33 (15)C8—C9—H9119.1
C1—C2—C3109.46 (17)C12—C10—O2109.0 (3)
N1—C2—H2108.9C12—C10—C11112.4 (3)
C1—C2—H2108.9O2—C10—C11107.1 (3)
C3—C2—H2108.9C12—C10—H10109.4
C4—C3—C2115.55 (17)O2—C10—H10109.4
C4—C3—H3A108.4C11—C10—H10109.4
C2—C3—H3A108.4C10—C11—H11A109.5
C4—C3—H3B108.4C10—C11—H11B109.5
C2—C3—H3B108.4H11A—C11—H11B109.5
H3A—C3—H3B107.5C10—C11—H11C109.5
C9—C4—C5117.29 (18)H11A—C11—H11C109.5
C9—C4—C3121.7 (2)H11B—C11—H11C109.5
C5—C4—C3121.0 (2)C10—C12—H12A109.5
C4—C5—C6121.7 (2)C10—C12—H12B109.5
C4—C5—H5119.2H12A—C12—H12B109.5
C6—C5—H5119.2C10—C12—H12C109.5
C7—C6—C5119.8 (2)H12A—C12—H12C109.5
C7—C6—H6120.1H12B—C12—H12C109.5
C10—O2—C1—O16.8 (3)C3—C4—C5—C6179.2 (2)
C10—O2—C1—C2171.22 (19)C4—C5—C6—C71.1 (4)
O1—C1—C2—N137.6 (3)C5—C6—C7—O3179.8 (2)
O2—C1—C2—N1144.43 (18)C5—C6—C7—C80.8 (3)
O1—C1—C2—C382.1 (3)O3—C7—C8—C9179.7 (2)
O2—C1—C2—C395.9 (2)C6—C7—C8—C90.2 (3)
N1—C2—C3—C4178.6 (2)C5—C4—C9—C80.3 (3)
C1—C2—C3—C458.2 (3)C3—C4—C9—C8178.6 (2)
C2—C3—C4—C9123.6 (2)C7—C8—C9—C40.0 (3)
C2—C3—C4—C558.2 (3)C1—O2—C10—C12105.1 (3)
C9—C4—C5—C60.8 (3)C1—O2—C10—C11133.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···N1i0.97 (4)1.78 (4)2.736 (3)167 (3)
N1—H1N···O3ii0.88 (2)2.27 (2)3.106 (2)157 (2)
N1—H2N···O3iii0.89 (3)2.46 (3)3.336 (3)171 (2)
C2—H2···O1iv0.992.373.314 (3)159
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1/2, y+1, z1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H17NO3
Mr223.27
Crystal system, space groupOrthorhombic, P212121
Temperature (K)233
a, b, c (Å)5.4539 (1), 14.0521 (3), 16.5163 (4)
V3)1265.79 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8375, 1318, 1271
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.07
No. of reflections1318
No. of parameters158
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···N1i0.97 (4)1.78 (4)2.736 (3)167 (3)
N1—H1N···O3ii0.88 (2)2.27 (2)3.106 (2)157 (2)
N1—H2N···O3iii0.89 (3)2.46 (3)3.336 (3)171 (2)
C2—H2···O1iv0.992.373.314 (3)159
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1/2, y+1, z1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z.
 

Acknowledgements

We thank the Universidad Nacional de Colombia for the financial support (DIB research project No. 14178).

References

First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNicolaï, B., Mahé, N., Céolin, R., Rietveld, I., Barrio, M. & Tamarit, J.-L. (2011). Struct. Chem. 22, 649–659.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV Delft, The Netherlands.  Google Scholar
First citationNuñez-Dallos, N., Reyes, A. & Quevedo, R. (2012). Tetrahedron Lett. 53, 530–533.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307–326. New York: Academic Press.  Google Scholar
First citationQian, S.-S., Zhu, H.-L. & Tiekink, E. R. T. (2006). Acta Cryst. E62, o882–o884.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuevedo, R. & Moreno-Murillo, B. (2009). Tetrahedron Lett. 50, 936–938.  Web of Science CrossRef CAS Google Scholar
First citationQuevedo, R., Nuñez-Dallos, N., Wurst, K. & Duarte-Ruiz, A. (2012). J. Mol. Struct. 1029, 175–179.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds