metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1385-m1386

6-Benzyl-2-methyl-1,3-bis­­(penta­fluoro­phen­yl)-1,3,6,2-tri­aza­alumocane

aDepartment of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation, and bInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, Moscow 119991, Russian Federation
*Correspondence e-mail: churakov@igic.ras.ru

(Received 7 October 2012; accepted 11 October 2012; online 20 October 2012)

In the title compound, [Al(CH3)(C23H15F10N3)], the AlIII atom is coordinated in a distorted tetra­hedral geometry by three N atoms from the tridentate amine and by one C atom of the methyl substituent. Further, there is a short intra­molecular Al⋯F contact [2.5717 (11) Å], leading to an overall distorted trigonal–bipyramidal coordination environment around AlIII.

Related literature

For general background to the chemistry affording the tridentate ligand N-benzyl-N′-(penta­fluoro­phen­yl)-N-{2-[(penta­fluoro­phen­yl)amino]­eth­yl}ethane-1,2-diamine, see: Lermontova et al. (2009[Lermontova, E. Kh., Huang, M., Churakov, A. V., Howard, J. A. K., Zabalov, M. V., Karlov, S. S. & Zaitseva, G. S. (2009). Dalton Trans. pp. 4695-4702.]). Complexes of germanium and tin based on that and the related ligands and their X-ray structures have been described by Huang et al. (2011[Huang, M., Kireenko, M. M., Lermontova, E. Kh., Churakov, A. V., Oprunenko, Y. F., Zaitsev, K. V., Karlov, S. S. & Zaitseva, G. S. (2011). Butlerov Commun. 24, 26-38.], 2012[Huang, M., Kireenko, M. M., Zaitsev, K. V., Oprunenko, Y. F., Churakov, A. V., Howard, J. A. K., Lermontova, E. K., Sorokin, D., Linder, T., Sundermeyer, J., Karlov, S. S. & Zaitseva, G. S. (2012). Eur. J. Inorg. Chem. pp. 3712-3724.]). For related structures having short Al⋯F—C contacts, see: Smith et al. (2010[Smith, J. C., Ma, K., Piers, W. E., Parvez, M. & McDonald, R. (2010). Dalton Trans. 39, 10256-10263.]); Jansen & Mokros (1992[Jansen, M. & Mokros, I. (1992). Z. Anorg. Allg. Chem. 612, 101-106.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Al(CH3)(C23H15F10N3)]

  • Mr = 565.39

  • Monoclinic, P 21 /c

  • a = 7.9530 (14) Å

  • b = 33.577 (6) Å

  • c = 8.7247 (15) Å

  • β = 100.809 (2)°

  • V = 2288.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 173 K

  • 0.20 × 0.20 × 0.05 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.991

  • 19211 measured reflections

  • 4972 independent reflections

  • 4317 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.094

  • S = 1.02

  • 4972 reflections

  • 415 parameters

  • All H-atom parameters refined

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a part of our investigation on chemistry of germanium, tin and aluminium complexes based on tridentate ligands (Lermontova et al., 2009; Huang et al., 2011, 2012) we obtained and studied the structure of title compound, [Al[C6H5CH2N(CH2CH2NHC6F5)2](CH3)].

The aluminium centre and aromatic F18 atom form a short intramolecular contact [2.5717 (11) Å]. Of interest, F18—C18 bond length [1.359 (2) Å] is the longest among ten F—C distances in the structure. Analysis of Cambridge Structural Database (ver. 5.33, August 2012; Allen, 2002) shows that similar but somewhat longer Al···F—C contacts are observed in the structures EKIBIK (2.690 Å, Smith et al., 2010) and YADTEC (2.719 Å, Jansen & Mokros, 1992).

The Al1 atom has trigonal bipyramid coordination environment. Three equatorial positions are occupied by methyl group C10 and trigonal nitrogen atoms N1 and N2. The angles between C10, N1 and N2 atoms range within 112.86 (7)–124.64 (7)°. The aluminium atom is only slightly displaced [0.1937 (9) Å] from the plane of these ligands towards the coordinated tetrahedral donor atom N3. The N3 and F18 atoms lie in the apical positions with an N3—Al1—F18 angle equal to 152.24 (5)°. As expected, the dative N3Al1 bond length [2.0104 (13) Å] is significantly longer than equatorial nitrogen-aluminium distances [1.8575 (14) and 1.8697 (14) Å].

Related literature top

For general background to the chemistry affording the tridentate ligand N-benzyl-N'-(pentafluorophenyl)-N-{2-[(pentafluorophenyl)amino]ethyl}ethane-1,2-diamine, see: Lermontova et al. (2009). Complexes of germanium and tin based on that and the related ligands and their X-ray structures have been described by Huang et al. (2011, 2012). For related structures having short Al···F—C contacts, see: Smith et al. (2010); Jansen & Mokros (1992). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

A solution of 0.26 g (0.50 mmol) of BnN(CH2CH2NHC6F5)2 (Lermontova et al., 2009) in toluene (10 ml) was added dropwise to a solution of 0.25 ml (0.50 mmol) of Me3Al in toluene (10 ml) under stirring at 243 K. The reaction mixture was allowed to warm to room temperature and stirred overnight. The volatiles were removed under vacuum. The residue was washed by ether (3×5 ml) and dried to give 0.24 g (86%) of BnN(CH2CH2NHC6F5)2AlMe as a white solid.

1H NMR (CDCl3): δ -0.56 (br s, 3H, AlMe); 2.88–2.97, 3.00–3.09, 3.57–3.66, 3.67–3.76 (4 m, 8H, NCH2); 4.03 (s, 2H, NCH2Ph); 7.29–7.34, 7.42–7.47 (2 m, 5H, Ph). 13C NMR (CDCl3): δ 44.29, 49.94 (4NCH2); 56.01 (NCH2Ph); 128.77, 129.00, 131.39, 131.55 (Ph). 1H NMR (C6D6): δ -0.31 (p, JF—H = 2.4 Hz, 3H, AlMe); 1.95–2.04, 2.10–2.17, 3.08–3.20 (3 m, 8H, NCH2); 3.34 (s, 2H, NCH2Ph); 6.53–6.57, 7.00–7.06, 7.07–7.10 (3 m, 5H, Ph). 13C NMR (C6D6): δ 49.48, 53.34 (4NCH2); 55.61 (NCH2Ph); 128.54, 129.24, 129.31, 131.72 (Ph). EI m/z 564 (M, 5%); 432 (M—Bn, 3%); 91 (Bn, 100%); 42 (AlMe, 78%). Anal. Calcd. for C24H18AlN3F10: C 50.98, H 3.21, N 7.43. Found: C 50.68, H 3.36, N 7.39.

The crystals were obtained from the concentrated toluene solution under storing at 255 K for several days.

Refinement top

All H atoms were located in a difference Fourier map and refined isotropically. [Refined C—H distances: 0.90 (2)–0.97 (3) Å for aromatic CH, 0.931 (19)–1.004 (19) Å for CH2 and 0.92 (3)–0.98 (2) Å for CH3.]

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the numbering scheme adopted. Displacement ellipsoids are shown at the 50% probability level. The short intramolecular contact Al···F—C is drawn by dashed line. Hydrogen atoms are omitted for clarity.
[N-Benzyl-N,N-bis(pentafluorophenylanide)ethyl]amine -methylaluminium(III) top
Crystal data top
[Al(CH3)(C23H15F10N3)]F(000) = 1144
Mr = 565.39Dx = 1.641 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8521 reflections
a = 7.9530 (14) Åθ = 2.5–28.1°
b = 33.577 (6) ŵ = 0.19 mm1
c = 8.7247 (15) ÅT = 173 K
β = 100.809 (2)°Plate, colourless
V = 2288.5 (7) Å30.20 × 0.20 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
4972 independent reflections
Radiation source: fine-focus sealed tube4317 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.963, Tmax = 0.991k = 4242
19211 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.094All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0439P)2 + 1.3304P]
where P = (Fo2 + 2Fc2)/3
4972 reflections(Δ/σ)max < 0.001
415 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Al(CH3)(C23H15F10N3)]V = 2288.5 (7) Å3
Mr = 565.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9530 (14) ŵ = 0.19 mm1
b = 33.577 (6) ÅT = 173 K
c = 8.7247 (15) Å0.20 × 0.20 × 0.05 mm
β = 100.809 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
4972 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4317 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.991Rint = 0.021
19211 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.094All H-atom parameters refined
S = 1.02Δρmax = 0.36 e Å3
4972 reflectionsΔρmin = 0.26 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.55982 (6)0.117782 (13)0.49859 (5)0.02089 (11)
N10.60780 (16)0.16461 (4)0.39907 (14)0.0223 (3)
N20.68539 (17)0.07207 (4)0.47836 (15)0.0254 (3)
N30.74288 (16)0.13396 (4)0.67940 (14)0.0214 (3)
C10.6675 (2)0.15076 (5)0.81197 (18)0.0247 (3)
C20.7938 (2)0.16032 (5)0.95983 (18)0.0267 (3)
C30.8602 (2)0.19843 (5)0.9886 (2)0.0308 (4)
C40.9723 (2)0.20708 (6)1.1272 (2)0.0375 (4)
C51.0209 (2)0.17743 (7)1.2368 (2)0.0408 (5)
C60.9549 (3)0.13976 (7)1.2102 (2)0.0407 (5)
C70.8404 (2)0.13109 (6)1.0735 (2)0.0340 (4)
C100.3337 (2)0.11830 (6)0.5555 (2)0.0304 (4)
C110.84769 (19)0.16404 (5)0.61234 (18)0.0236 (3)
C120.7313 (2)0.19083 (5)0.49746 (18)0.0232 (3)
C130.51390 (18)0.17824 (5)0.26115 (17)0.0212 (3)
C140.4895 (2)0.21746 (5)0.20674 (18)0.0235 (3)
C150.3887 (2)0.22716 (5)0.06498 (19)0.0261 (3)
C160.3087 (2)0.19796 (5)0.03367 (18)0.0279 (3)
C170.3261 (2)0.15883 (5)0.01513 (18)0.0257 (3)
C180.4249 (2)0.15007 (5)0.15781 (18)0.0235 (3)
C210.8424 (2)0.09669 (5)0.72549 (19)0.0258 (3)
C220.8566 (2)0.07283 (5)0.58014 (19)0.0270 (3)
C230.6498 (2)0.04053 (5)0.37471 (18)0.0274 (3)
C240.7699 (2)0.01889 (5)0.3099 (2)0.0338 (4)
C250.7253 (3)0.01322 (6)0.2104 (2)0.0405 (5)
C260.5577 (3)0.02420 (5)0.1651 (2)0.0408 (5)
C270.4342 (3)0.00290 (5)0.2209 (2)0.0371 (4)
C280.4803 (2)0.02780 (5)0.3244 (2)0.0304 (4)
F140.56225 (13)0.24841 (3)0.29513 (11)0.0310 (2)
F150.36334 (13)0.26570 (3)0.02492 (12)0.0354 (2)
F160.21053 (13)0.20771 (3)0.17192 (11)0.0392 (3)
F170.24581 (13)0.12973 (3)0.07535 (12)0.0371 (2)
F180.43879 (13)0.11143 (3)0.20488 (11)0.0309 (2)
F240.93701 (14)0.02933 (4)0.34006 (13)0.0452 (3)
F250.84828 (18)0.03270 (4)0.15369 (15)0.0569 (4)
F260.51315 (19)0.05520 (3)0.06690 (14)0.0553 (4)
F270.26773 (16)0.01208 (3)0.17435 (14)0.0492 (3)
F280.35477 (13)0.04643 (3)0.37978 (13)0.0382 (3)
H1120.917 (2)0.1790 (5)0.6947 (19)0.018 (4)*
H1220.803 (2)0.2058 (5)0.436 (2)0.020 (4)*
H1210.675 (2)0.2111 (5)0.554 (2)0.020 (4)*
H2220.894 (2)0.0457 (6)0.615 (2)0.027 (5)*
H30.833 (2)0.2184 (5)0.912 (2)0.025 (4)*
H120.605 (2)0.1750 (6)0.774 (2)0.030 (5)*
H1110.921 (2)0.1507 (5)0.558 (2)0.024 (4)*
H2120.778 (2)0.0818 (5)0.790 (2)0.028 (5)*
H2210.950 (2)0.0841 (6)0.530 (2)0.028 (5)*
H110.585 (2)0.1307 (6)0.834 (2)0.031 (5)*
H2110.955 (2)0.1031 (6)0.787 (2)0.029 (5)*
H70.792 (2)0.1051 (6)1.055 (2)0.031 (5)*
H1030.310 (3)0.1447 (7)0.596 (3)0.050 (6)*
H41.012 (3)0.2322 (7)1.140 (2)0.036 (5)*
H51.097 (3)0.1834 (6)1.326 (3)0.045 (6)*
H1020.322 (3)0.0973 (7)0.630 (3)0.048 (6)*
H60.982 (3)0.1182 (7)1.285 (3)0.060 (7)*
H1010.255 (3)0.1136 (8)0.465 (3)0.064 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0208 (2)0.0198 (2)0.0209 (2)0.00011 (17)0.00084 (17)0.00025 (17)
N10.0248 (6)0.0209 (6)0.0193 (6)0.0020 (5)0.0004 (5)0.0001 (5)
N20.0265 (7)0.0217 (6)0.0254 (7)0.0034 (5)0.0016 (5)0.0024 (5)
N30.0222 (6)0.0213 (6)0.0201 (6)0.0019 (5)0.0022 (5)0.0006 (5)
C10.0233 (7)0.0286 (8)0.0216 (7)0.0019 (6)0.0028 (6)0.0012 (6)
C20.0231 (7)0.0362 (9)0.0208 (7)0.0034 (6)0.0042 (6)0.0041 (6)
C30.0287 (8)0.0338 (9)0.0293 (8)0.0055 (7)0.0038 (7)0.0060 (7)
C40.0307 (9)0.0450 (11)0.0368 (10)0.0016 (8)0.0066 (7)0.0164 (8)
C50.0278 (9)0.0717 (14)0.0219 (8)0.0035 (9)0.0016 (7)0.0107 (9)
C60.0403 (10)0.0600 (13)0.0212 (8)0.0057 (9)0.0042 (7)0.0045 (8)
C70.0361 (9)0.0418 (10)0.0242 (8)0.0004 (8)0.0059 (7)0.0013 (7)
C100.0238 (8)0.0363 (10)0.0303 (9)0.0002 (7)0.0031 (7)0.0010 (8)
C110.0217 (7)0.0258 (8)0.0223 (7)0.0029 (6)0.0020 (6)0.0018 (6)
C120.0238 (7)0.0222 (7)0.0230 (7)0.0033 (6)0.0024 (6)0.0022 (6)
C130.0200 (7)0.0241 (7)0.0201 (7)0.0002 (6)0.0051 (5)0.0007 (6)
C140.0241 (7)0.0227 (7)0.0237 (7)0.0022 (6)0.0049 (6)0.0006 (6)
C150.0261 (8)0.0254 (8)0.0273 (8)0.0012 (6)0.0065 (6)0.0075 (6)
C160.0229 (7)0.0391 (9)0.0205 (7)0.0007 (7)0.0007 (6)0.0063 (7)
C170.0232 (7)0.0313 (8)0.0223 (7)0.0039 (6)0.0034 (6)0.0045 (6)
C180.0250 (7)0.0221 (7)0.0236 (7)0.0008 (6)0.0054 (6)0.0003 (6)
C210.0262 (8)0.0249 (8)0.0237 (8)0.0044 (6)0.0018 (6)0.0008 (6)
C220.0256 (8)0.0256 (8)0.0274 (8)0.0059 (6)0.0017 (6)0.0017 (6)
C230.0370 (9)0.0188 (7)0.0238 (8)0.0026 (6)0.0005 (6)0.0020 (6)
C240.0374 (9)0.0299 (9)0.0310 (9)0.0079 (7)0.0020 (7)0.0021 (7)
C250.0567 (12)0.0293 (9)0.0326 (9)0.0163 (8)0.0013 (8)0.0025 (7)
C260.0650 (13)0.0200 (8)0.0313 (9)0.0015 (8)0.0064 (9)0.0029 (7)
C270.0492 (11)0.0227 (8)0.0343 (9)0.0062 (8)0.0050 (8)0.0036 (7)
C280.0389 (9)0.0200 (8)0.0302 (8)0.0011 (7)0.0008 (7)0.0029 (6)
F140.0387 (5)0.0212 (5)0.0299 (5)0.0042 (4)0.0014 (4)0.0004 (4)
F150.0387 (6)0.0295 (5)0.0362 (5)0.0026 (4)0.0024 (4)0.0130 (4)
F160.0365 (6)0.0502 (7)0.0257 (5)0.0025 (5)0.0074 (4)0.0107 (5)
F170.0392 (6)0.0393 (6)0.0286 (5)0.0072 (4)0.0045 (4)0.0082 (4)
F180.0384 (5)0.0214 (5)0.0300 (5)0.0022 (4)0.0009 (4)0.0010 (4)
F240.0363 (6)0.0525 (7)0.0453 (6)0.0106 (5)0.0041 (5)0.0165 (5)
F250.0693 (8)0.0504 (7)0.0465 (7)0.0275 (6)0.0010 (6)0.0186 (6)
F260.0880 (10)0.0271 (6)0.0431 (7)0.0011 (6)0.0074 (6)0.0131 (5)
F270.0533 (7)0.0347 (6)0.0531 (7)0.0174 (5)0.0067 (6)0.0040 (5)
F280.0328 (5)0.0360 (6)0.0452 (6)0.0056 (4)0.0054 (5)0.0057 (5)
Geometric parameters (Å, º) top
Al1—N21.8575 (14)C11—H1110.931 (19)
Al1—N11.8697 (14)C12—H1220.990 (17)
Al1—C101.9536 (18)C12—H1210.995 (17)
Al1—N32.0104 (13)C13—C141.401 (2)
Al1—F182.5717 (11)C13—C181.403 (2)
N1—C131.3704 (19)C14—F141.3573 (17)
N1—C121.4700 (19)C14—C151.381 (2)
N2—C231.387 (2)C15—F151.3457 (18)
N2—C221.480 (2)C15—C161.379 (2)
N3—C211.4947 (19)C16—F161.3486 (18)
N3—C111.497 (2)C16—C171.380 (2)
N3—C11.5086 (19)C17—F171.3404 (18)
C1—C21.514 (2)C17—C181.373 (2)
C1—H120.976 (19)C18—F181.3591 (18)
C1—H110.99 (2)C21—C221.522 (2)
C2—C31.389 (2)C21—H2120.972 (19)
C2—C71.395 (2)C21—H2110.980 (19)
C3—C41.392 (2)C22—H2220.987 (19)
C3—H30.946 (19)C22—H2211.004 (19)
C4—C51.384 (3)C23—C241.401 (2)
C4—H40.90 (2)C23—C281.404 (2)
C5—C61.372 (3)C24—F241.352 (2)
C5—H50.91 (2)C24—C251.388 (3)
C6—C71.390 (3)C25—F251.345 (2)
C6—H60.97 (3)C25—C261.368 (3)
C7—H70.96 (2)C26—F261.353 (2)
C10—H1030.98 (2)C26—C271.375 (3)
C10—H1020.98 (2)C27—F271.346 (2)
C10—H1010.92 (3)C27—C281.374 (2)
C11—C121.524 (2)C28—F281.342 (2)
C11—H1120.963 (17)
N2—Al1—N1119.38 (6)H112—C11—H111107.5 (14)
N2—Al1—C10124.64 (7)N1—C12—C11106.70 (12)
N1—Al1—C10112.86 (7)N1—C12—H122112.0 (10)
N2—Al1—N388.55 (6)C11—C12—H122108.6 (10)
N1—Al1—N387.50 (6)N1—C12—H121112.8 (10)
C10—Al1—N3111.33 (7)C11—C12—H121110.5 (10)
N2—Al1—F1886.80 (5)H122—C12—H121106.2 (14)
N1—Al1—F1871.20 (4)N1—C13—C14129.02 (14)
C10—Al1—F1893.65 (6)N1—C13—C18117.72 (14)
N3—Al1—F18152.24 (5)C14—C13—C18113.25 (13)
C13—N1—C12120.47 (12)F14—C14—C15116.26 (14)
C13—N1—Al1124.31 (10)F14—C14—C13120.67 (13)
C12—N1—Al1113.87 (9)C15—C14—C13123.05 (14)
C23—N2—C22117.19 (13)F15—C15—C16119.51 (14)
C23—N2—Al1130.18 (11)F15—C15—C14119.53 (14)
C22—N2—Al1112.29 (10)C16—C15—C14120.92 (15)
C21—N3—C11111.39 (12)F16—C16—C15120.50 (15)
C21—N3—C1111.92 (12)F16—C16—C17120.99 (15)
C11—N3—C1112.20 (12)C15—C16—C17118.46 (14)
C21—N3—Al1104.70 (9)F17—C17—C18120.41 (15)
C11—N3—Al1104.48 (9)F17—C17—C16120.21 (14)
C1—N3—Al1111.67 (9)C18—C17—C16119.37 (14)
N3—C1—C2115.91 (12)F18—C18—C17118.59 (13)
N3—C1—H12107.5 (11)F18—C18—C13116.52 (13)
C2—C1—H12109.0 (11)C17—C18—C13124.89 (15)
N3—C1—H11105.8 (11)N3—C21—C22109.57 (12)
C2—C1—H11109.8 (11)N3—C21—H212106.1 (11)
H12—C1—H11108.7 (15)C22—C21—H212110.1 (11)
C3—C2—C7118.60 (15)N3—C21—H211110.3 (11)
C3—C2—C1121.23 (15)C22—C21—H211111.8 (11)
C7—C2—C1120.12 (16)H212—C21—H211108.7 (15)
C2—C3—C4120.60 (18)N2—C22—C21107.78 (13)
C2—C3—H3119.8 (11)N2—C22—H222111.0 (10)
C4—C3—H3119.5 (11)C21—C22—H222107.3 (11)
C5—C4—C3120.01 (19)N2—C22—H221114.4 (10)
C5—C4—H4122.9 (13)C21—C22—H221110.1 (11)
C3—C4—H4117.1 (13)H222—C22—H221106.0 (15)
C6—C5—C4119.88 (17)N2—C23—C24126.01 (16)
C6—C5—H5121.3 (14)N2—C23—C28120.22 (15)
C4—C5—H5118.9 (14)C24—C23—C28113.77 (15)
C5—C6—C7120.41 (19)F24—C24—C25116.72 (16)
C5—C6—H6123.0 (15)F24—C24—C23120.44 (15)
C7—C6—H6116.6 (15)C25—C24—C23122.82 (17)
C6—C7—C2120.45 (19)F25—C25—C26119.94 (17)
C6—C7—H7121.0 (12)F25—C25—C24119.32 (19)
C2—C7—H7118.6 (12)C26—C25—C24120.70 (18)
Al1—C10—H103109.9 (13)F26—C26—C25121.03 (19)
Al1—C10—H102111.6 (13)F26—C26—C27120.31 (18)
H103—C10—H102111.6 (19)C25—C26—C27118.66 (16)
Al1—C10—H101106.8 (16)F27—C27—C28119.72 (18)
H103—C10—H101108 (2)F27—C27—C26120.11 (16)
H102—C10—H101108 (2)C28—C27—C26120.17 (18)
N3—C11—C12109.96 (12)F28—C28—C27117.51 (16)
N3—C11—H112110.2 (10)F28—C28—C23118.72 (14)
C12—C11—H112112.0 (10)C27—C28—C23123.77 (17)
N3—C11—H111108.8 (11)C18—F18—Al1102.48 (8)
C12—C11—H111108.3 (11)

Experimental details

Crystal data
Chemical formula[Al(CH3)(C23H15F10N3)]
Mr565.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.9530 (14), 33.577 (6), 8.7247 (15)
β (°) 100.809 (2)
V3)2288.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.20 × 0.20 × 0.05
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.963, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
19211, 4972, 4317
Rint0.021
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.02
No. of reflections4972
No. of parameters415
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.36, 0.26

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was partially supported by RFBR (projects 12–03-90020-Bel_a, 12–03-00206 − a) and a grant from the President of the Russian Federation to support the research of young Russian scientists and doctors (MD-3634.2012.3).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, M., Kireenko, M. M., Lermontova, E. Kh., Churakov, A. V., Oprunenko, Y. F., Zaitsev, K. V., Karlov, S. S. & Zaitseva, G. S. (2011). Butlerov Commun. 24, 26–38.  Google Scholar
First citationHuang, M., Kireenko, M. M., Zaitsev, K. V., Oprunenko, Y. F., Churakov, A. V., Howard, J. A. K., Lermontova, E. K., Sorokin, D., Linder, T., Sundermeyer, J., Karlov, S. S. & Zaitseva, G. S. (2012). Eur. J. Inorg. Chem. pp. 3712–3724.  Web of Science CSD CrossRef Google Scholar
First citationJansen, M. & Mokros, I. (1992). Z. Anorg. Allg. Chem. 612, 101–106.  CSD CrossRef CAS Web of Science Google Scholar
First citationLermontova, E. Kh., Huang, M., Churakov, A. V., Howard, J. A. K., Zabalov, M. V., Karlov, S. S. & Zaitseva, G. S. (2009). Dalton Trans. pp. 4695–4702.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, J. C., Ma, K., Piers, W. E., Parvez, M. & McDonald, R. (2010). Dalton Trans. 39, 10256–10263.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1385-m1386
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds