organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(6-Amino­pyridinium-3-yl)benzoate monohydrate

aCollege of Mechanical and Material Engineering, China Three Gorges University, Yichang 443002, People's Republic of China
*Correspondence e-mail: junzhao08@126.com

(Received 9 September 2012; accepted 7 October 2012; online 13 October 2012)

The title compound, C12H10N2O2·H2O, crystallizes as a zwitterion in which the pyridine N atom is protonated and the carboxyl OH group is deprotonated. The benzene and pyridinium rings are inclined at a dihedral angle of 54.93 (1)°. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional supra­molecular network.

Related literature

For the use of pyridine­carb­oxy­lic acid in coordination chemistry and for related structures, see: Tang et al. (2011[Tang, L., Fu, F., Wu, Y. P., Hou, X. Y. & Gao, L. J. (2011). J. Coord. Chem. 64, 3146-3157.]); Zhong et al. (2008[Zhong, R. Q., Zou, R. Q., Du, M., Jiang, L., Yamada, T., Maruta, G., Takeda, S. & Xu, Q. (2008). CrystEngComm, 10, 605-613.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O2·H2O

  • Mr = 232.24

  • Monoclinic, P 21 /c

  • a = 7.1956 (18) Å

  • b = 13.091 (9) Å

  • c = 11.987 (10) Å

  • β = 101.44 (3)°

  • V = 1106.8 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.983

  • 9294 measured reflections

  • 1942 independent reflections

  • 1344 reflections with I > 2σ(I)

  • Rint = 0.095

Refinement
  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.215

  • S = 1.09

  • 1942 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 1.87 2.715 (4) 167
N2—H2A⋯O2i 0.86 1.95 2.803 (4) 172
N2—H2B⋯O1W 0.86 2.19 2.915 (5) 142
O1W—H1WA⋯O2ii 0.86 2.00 2.761 (5) 147
O1W—H1WB⋯O1iii 0.87 2.16 2.928 (5) 146
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Wisconsin, USA.]); cell refinement: SAINT (Bruker,1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Wisconsin, USA.]); data reduction: SAINT); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Multidentate bridging ligands containing functional groups such as the familiar pyridyl and/or carboxylate groups have proven to be among the most important types of organic ligands for the design and construction of coordination polymers exhibiting remarkable polymeric structural motifs due to their rich coordination modes (Tang et al., 2011; Zhong et al., 2008). We attempted to synthesize a ZnII complex with the ligand in hydrothermal synthesis conditions. However the title compound was obtained, its structure is reported here.

The asymmetric unit of the title compound, C12H10N2O2. H2O is composed of one 3-(6-Amino-pyridinium-3-yl)-benzoate acid molecule and one lattice water molecule. The dihedral angle between the mean planes of the benzene and pyridinium rings is 54.93 (1)°. The deprotonated carboxylate COO(O1—C1—O2) group is slightly twisted from the benzene ring by an angle of 11.61 (7)° between their mean planes (Fig. 1). Intermolecular O—H···O and N—H···O hydrogen-bonding interactions (Table 1) link adjacent molecules into a three-dimensional supramolecular network (Fig. 2).

Related literature top

For the use of pyridinecarboxylic acid in coordination chemistry and for related structures, see: Tang et al. (2011); Zhong et al. (2008).

Experimental top

A mixture of 3-(6-Amino-pyridin-3-yl)-benzoic acid (0.0214 g, 0.1 mmol), Zn(CH3COO)2.2H2O (0.0219 g, 0.1 mmol) and water (8 ml) was stired vigorously for 30 min and then sealed in a Teflon-lined stainless-steel autoclave. The autoclave was heated and maintained at 393 K for 2 days, and then cooled to room temperature at 5 K h-1 to obtain colorless prism crystals suitable for X-ray analysis.

Refinement top

The H atoms bonded to C and N atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.86 Å) and allowed to ride on their parent atoms, with Uiso(H) value equal to 1.2Ueq(C or N). The H atoms bonded to water O atoms were included in calculated positions and refined with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker,1999); data reduction: SAINT (Bruker,1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with the atom-numbering scheme showing displacement ellipsoids at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. The three-dimensional supramolecular network formed by N—H···O and O—H···O hydrogen-bonding interactions. H atoms not involved in hydrogen bonding have been removed for clarity.
3-(6-Aminopyridinium-3-yl)benzoate monohydrate top
Crystal data top
C12H10N2O2·H2OF(000) = 488
Mr = 232.24Dx = 1.394 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1519 reflections
a = 7.1956 (18) Åθ = 3.1–25.0°
b = 13.091 (9) ŵ = 0.10 mm1
c = 11.987 (10) ÅT = 296 K
β = 101.44 (3)°Prism, colourless
V = 1106.8 (12) Å30.20 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1942 independent reflections
Radiation source: fine-focus sealed tube1344 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
ϕ and ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.980, Tmax = 0.983k = 1515
9294 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.215H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0884P)2 + 0.8024P]
where P = (Fo2 + 2Fc2)/3
1942 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C12H10N2O2·H2OV = 1106.8 (12) Å3
Mr = 232.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1956 (18) ŵ = 0.10 mm1
b = 13.091 (9) ÅT = 296 K
c = 11.987 (10) Å0.20 × 0.18 × 0.17 mm
β = 101.44 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1942 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1344 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.983Rint = 0.095
9294 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0840 restraints
wR(F2) = 0.215H-atom parameters constrained
S = 1.09Δρmax = 0.30 e Å3
1942 reflectionsΔρmin = 0.21 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6726 (5)0.2413 (3)0.2146 (3)0.0454 (10)
C20.4946 (5)0.1869 (3)0.1993 (3)0.0408 (9)
C30.4506 (5)0.1783 (3)0.0921 (3)0.0418 (9)
H3A0.53600.20260.02910.050*
C40.2823 (5)0.1342 (3)0.0766 (3)0.0422 (9)
C50.1555 (6)0.0988 (3)0.1711 (4)0.0518 (11)
H5A0.04070.07040.16260.062*
C60.1995 (6)0.1055 (3)0.2783 (4)0.0546 (11)
H6A0.11460.08050.34100.066*
C70.3682 (5)0.1489 (3)0.2930 (3)0.0475 (10)
H7A0.39690.15260.36520.057*
C80.2383 (5)0.1250 (3)0.0394 (3)0.0414 (9)
C90.0750 (5)0.1644 (3)0.0640 (3)0.0461 (10)
H9A0.01150.19640.00670.055*
C100.1542 (5)0.1128 (3)0.2573 (3)0.0442 (10)
C110.3236 (5)0.0713 (3)0.2355 (3)0.0482 (10)
H11A0.40800.03890.29360.058*
C120.3642 (5)0.0783 (3)0.1300 (3)0.0478 (10)
H12A0.47790.05170.11720.057*
N10.0361 (4)0.1579 (2)0.1700 (3)0.0454 (8)
H1A0.06810.18370.18190.054*
N20.1056 (5)0.1100 (3)0.3583 (3)0.0558 (10)
H2A0.00030.13660.36710.067*
H2B0.17950.08140.41490.067*
O10.7197 (4)0.2360 (2)0.3109 (2)0.0626 (9)
O1W0.2996 (5)0.0676 (3)0.4736 (3)0.0984 (13)
H1WA0.31980.09950.53720.148*
H1WB0.24330.11200.42370.148*
O20.7649 (4)0.2900 (2)0.1316 (2)0.0611 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.040 (2)0.050 (2)0.048 (2)0.0020 (18)0.0135 (18)0.007 (2)
C20.0366 (19)0.038 (2)0.052 (2)0.0037 (16)0.0172 (17)0.0019 (17)
C30.039 (2)0.043 (2)0.046 (2)0.0025 (17)0.0136 (17)0.0019 (17)
C40.043 (2)0.034 (2)0.055 (2)0.0038 (16)0.0223 (18)0.0001 (17)
C50.045 (2)0.046 (2)0.068 (3)0.0120 (19)0.019 (2)0.007 (2)
C60.051 (3)0.055 (3)0.055 (3)0.008 (2)0.004 (2)0.007 (2)
C70.047 (2)0.045 (2)0.053 (2)0.0009 (19)0.0162 (19)0.0021 (19)
C80.043 (2)0.0304 (19)0.055 (2)0.0031 (16)0.0192 (18)0.0039 (17)
C90.046 (2)0.043 (2)0.053 (2)0.0009 (18)0.0183 (19)0.0058 (18)
C100.047 (2)0.035 (2)0.056 (2)0.0028 (17)0.0215 (19)0.0021 (18)
C110.046 (2)0.043 (2)0.060 (3)0.0058 (18)0.0190 (19)0.0039 (19)
C120.044 (2)0.039 (2)0.065 (3)0.0067 (18)0.023 (2)0.0010 (19)
N10.0381 (17)0.0437 (18)0.060 (2)0.0043 (15)0.0242 (16)0.0041 (16)
N20.053 (2)0.062 (2)0.058 (2)0.0078 (17)0.0229 (17)0.0039 (17)
O10.0569 (18)0.089 (2)0.0477 (17)0.0125 (16)0.0258 (14)0.0030 (15)
O1W0.120 (3)0.107 (3)0.070 (2)0.030 (3)0.024 (2)0.032 (2)
O20.0484 (16)0.083 (2)0.0543 (18)0.0193 (16)0.0175 (14)0.0085 (16)
Geometric parameters (Å, º) top
C1—O21.256 (4)C8—C121.408 (5)
C1—O11.267 (5)C9—N11.357 (5)
C1—C21.508 (5)C9—H9A0.9300
C2—C31.387 (5)C10—N21.326 (5)
C2—C71.390 (5)C10—N11.346 (5)
C3—C41.387 (5)C10—C111.406 (5)
C3—H3A0.9300C11—C121.357 (5)
C4—C51.386 (5)C11—H11A0.9300
C4—C81.491 (5)C12—H12A0.9300
C5—C61.385 (5)N1—H1A0.8600
C5—H5A0.9300N2—H2A0.8600
C6—C71.383 (5)N2—H2B0.8600
C6—H6A0.9300O1W—H1WA0.8554
C7—H7A0.9300O1W—H1WB0.8736
C8—C91.368 (5)
O2—C1—O1123.7 (4)C9—C8—C4121.4 (4)
O2—C1—C2118.1 (3)C12—C8—C4122.1 (3)
O1—C1—C2118.2 (4)N1—C9—C8121.6 (4)
C3—C2—C7119.1 (3)N1—C9—H9A119.2
C3—C2—C1120.5 (3)C8—C9—H9A119.2
C7—C2—C1120.3 (3)N2—C10—N1118.8 (3)
C4—C3—C2121.5 (4)N2—C10—C11123.6 (4)
C4—C3—H3A119.2N1—C10—C11117.6 (3)
C2—C3—H3A119.2C12—C11—C10120.1 (4)
C5—C4—C3118.7 (4)C12—C11—H11A120.0
C5—C4—C8120.6 (3)C10—C11—H11A120.0
C3—C4—C8120.7 (4)C11—C12—C8121.6 (4)
C6—C5—C4120.2 (4)C11—C12—H12A119.2
C6—C5—H5A119.9C8—C12—H12A119.2
C4—C5—H5A119.9C10—N1—C9122.7 (3)
C7—C6—C5120.8 (4)C10—N1—H1A118.7
C7—C6—H6A119.6C9—N1—H1A118.7
C5—C6—H6A119.6C10—N2—H2A120.0
C6—C7—C2119.6 (4)C10—N2—H2B120.0
C6—C7—H7A120.2H2A—N2—H2B120.0
C2—C7—H7A120.2H1WA—O1W—H1WB105.1
C9—C8—C12116.5 (3)
O2—C1—C2—C39.5 (5)C5—C4—C8—C955.5 (5)
O1—C1—C2—C3171.0 (4)C3—C4—C8—C9124.6 (4)
O2—C1—C2—C7167.5 (4)C5—C4—C8—C12126.5 (4)
O1—C1—C2—C711.9 (5)C3—C4—C8—C1253.5 (5)
C7—C2—C3—C41.1 (5)C12—C8—C9—N10.6 (6)
C1—C2—C3—C4176.0 (3)C4—C8—C9—N1178.7 (3)
C2—C3—C4—C50.4 (5)N2—C10—C11—C12179.2 (4)
C2—C3—C4—C8179.6 (3)N1—C10—C11—C120.7 (6)
C3—C4—C5—C61.5 (6)C10—C11—C12—C81.3 (6)
C8—C4—C5—C6178.5 (4)C9—C8—C12—C111.2 (6)
C4—C5—C6—C71.1 (6)C4—C8—C12—C11179.3 (4)
C5—C6—C7—C20.5 (6)N2—C10—N1—C9179.9 (4)
C3—C2—C7—C61.5 (5)C11—C10—N1—C90.1 (5)
C1—C2—C7—C6175.6 (3)C8—C9—N1—C100.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.861.872.715 (4)167
N2—H2A···O2i0.861.952.803 (4)172
N2—H2B···O1W0.862.192.915 (5)142
O1W—H1WA···O2ii0.862.002.761 (5)147
O1W—H1WB···O1iii0.872.162.928 (5)146
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H10N2O2·H2O
Mr232.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.1956 (18), 13.091 (9), 11.987 (10)
β (°) 101.44 (3)
V3)1106.8 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.980, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
9294, 1942, 1344
Rint0.095
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.215, 1.09
No. of reflections1942
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.21

Computer programs: SMART (Bruker, 1999), SAINT (Bruker,1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.861.872.715 (4)167.2
N2—H2A···O2i0.861.952.803 (4)171.6
N2—H2B···O1W0.862.192.915 (5)141.5
O1W—H1WA···O2ii0.862.002.761 (5)146.9
O1W—H1WB···O1iii0.872.162.928 (5)146.0
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z.
 

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, L., Fu, F., Wu, Y. P., Hou, X. Y. & Gao, L. J. (2011). J. Coord. Chem. 64, 3146–3157.  Web of Science CSD CrossRef Google Scholar
First citationZhong, R. Q., Zou, R. Q., Du, M., Jiang, L., Yamada, T., Maruta, G., Takeda, S. & Xu, Q. (2008). CrystEngComm, 10, 605–613.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds