organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-{(1Z)-1-[(6-Chloro­pyridin-3-ylmeth­yl)(eth­yl)amino]-3-(3-chloro­phen­yl)-2-nitro-5-oxohex-1-en­yl}-N-methyl­acetamide

aDepartment of Chemistry, College of Life and Environmental Science, Shanghai Normal University, Shanghai, 200234, People's Republic of China
*Correspondence e-mail: xiaobuling123@126.com

(Received 21 September 2012; accepted 18 October 2012; online 27 October 2012)

In the title compound, C23H26Cl2N4O4,the dihedral angle between the mean planes of the pyridine and 3-chloro­phenyl rings is 22.63 (2)°. The nitro group is in a Z conformation.

Related literature

For general background to neonicotinoid compounds and their application as insecticides, see: Tomizawa & Casida, (2000[Tomizawa, M. & Casida, J. E. (2000). Toxicol. Appl. Pharmacol. 169, 114-120.]); Minamida et al. (1993[Minamida, I., Iwanaga, K. & Tabuchi, T. (1993). J. Pestic. Sci. 18, 31-40.]); Kashiwada et al. (1996[Kashiwada, Y. (1996). Agrochem. Jpn, 68, 18-19.]). For the synthesis, see: Zhang et al. (2010[Zhang, W. W., Yang, X. B., Chen, W. D., Xu, X. Y., Li, L., Zhai, H. B. & Li, Z. (2010). J. Agric. Food Chem. 58, 2741-2745.]).

[Scheme 1]

Experimental

Crystal data
  • C23H26Cl2N4O4

  • Mr = 493.38

  • Triclinic, [P \overline 1]

  • a = 7.7948 (13) Å

  • b = 12.649 (2) Å

  • c = 13.021 (2) Å

  • α = 91.364 (3)°

  • β = 98.765 (2)°

  • γ = 107.878 (3)°

  • V = 1204.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.943, Tmax = 0.970

  • 7096 measured reflections

  • 4200 independent reflections

  • 3870 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.148

  • S = 1.17

  • 4200 reflections

  • 302 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Neonicotinoid insecticides have gained worldwide attention for being the fastest growing class of insecticides in modern crop protection, with wide spread use against sucking and chewing pests. Since imidacloprid (IMI) was first introduced to the market in 1991, many new neonicotinoid insecticides (NNSs) are now being sold. Nitenpyram, a chloronicotinyl derivative marketed in 1995, was characterized with a much lower toxicity against the mammals than imidacloprid (Tomizawa & Casida, 2000; Minamida et al., 1993; Kashiwada et al., 1996). In this paper, the title compound, (I), a new derivative, has been synthesized and characterized by X-ray diffraction.

In the title compound, C23H26Cl2N4O4, there is one molecule in the asymmetric unit (Fig. 1). The dihedral angle between the mean planes of the pyridine and 3-chlorophenyl rings is 22.63 (2)°. As compared with the (E) configuration of the nitro group in the crystal structure of nitenpyram, the nitro group in the title compound is in the (Z) configuration as anticipated.

Related literature top

For general background to neonicotinoid compounds and their application as insecticides, see: Tomizawa & Casida, (2000); Minamida et al. (1993); Kashiwada et al. (1996). For the synthesis, see: Zhang et al. (2010).

Experimental top

The title compound was prepared by the literature method (Zhang et al., 2010). It was obtained using volatilization of petroleum ether and ethyl acetate solution at room temperature, giving yellow crystals (yield 78.6%). Anal. calcd. for C23H26Cl2N4O4 C 55.99, H 5.31, N 11.36%. found, C 55.97, H 5.32, N 11.38%.

Refinement top

In (I), H atoms bonded to C and N atoms were located at their ideal positions and subsequently treated as riding modes with C–H distances of 0.93Å (aromatic), 0.97Å (methylene), 0.98Å (methine) and 0.96Å (methyl) with Uiso(H) = 1.2Ueq(aromatic, methylene methine C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
N-{(1Z)-1-[(6-Chloropyridin-3-ylmethyl)(ethyl)amino]-3-(3- chlorophenyl)-2-nitro-5-oxohex-1-enyl}-N-methylacetamide top
Crystal data top
C23H26Cl2N4O4Z = 2
Mr = 493.38F(000) = 516
Triclinic, P1Dx = 1.361 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7948 (13) ÅCell parameters from 4525 reflections
b = 12.649 (2) Åθ = 2.2–28.3°
c = 13.021 (2) ŵ = 0.31 mm1
α = 91.364 (3)°T = 298 K
β = 98.765 (2)°Block, yellow
γ = 107.878 (3)°0.16 × 0.12 × 0.10 mm
V = 1204.1 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4200 independent reflections
Radiation source: fine-focus sealed tube3870 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 79
Tmin = 0.943, Tmax = 0.970k = 1513
7096 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.9109P]
where P = (Fo2 + 2Fc2)/3
4200 reflections(Δ/σ)max = 0.011
302 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C23H26Cl2N4O4γ = 107.878 (3)°
Mr = 493.38V = 1204.1 (3) Å3
Triclinic, P1Z = 2
a = 7.7948 (13) ÅMo Kα radiation
b = 12.649 (2) ŵ = 0.31 mm1
c = 13.021 (2) ÅT = 298 K
α = 91.364 (3)°0.16 × 0.12 × 0.10 mm
β = 98.765 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4200 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3870 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.970Rint = 0.020
7096 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.17Δρmax = 0.47 e Å3
4200 reflectionsΔρmin = 0.38 e Å3
302 parameters
Special details top

Experimental. 1H NMR (CDCl3, 400 Hz): 8.47 (d, J = 1.9 Hz,1H, Py—H), 7.83 (dd, J = 8.2, 2.4 Hz, 1H, Py—H), 7.42 (d, J = 8.2 Hz, 1H, Py—H), 7.12 (d, J = 10.2 Hz, 1H, Ph—H), 7.01–6.91 (m, 3H, Ph—H), 4.27 (d, J = 14.7 Hz, 1H), 4.12 (d, J = 7.7 Hz, 1H), 4.00 (dd, J = 10.8, 3.8 Hz, 1H), 3.78 (d, J = 14.8 Hz, 1H), 3.31 (s, 3H, NCH3), 3.09 (dd, J = 14.4, 7.2 Hz, 1H, NCH2), 2.89 (d, J = 3.9Hz, 1H, NCH2), 2.26 (s, 1H), 2.13 (s, 3H), 1.67 (s, 3H), 1.17 (t, J = 7.2 Hz, 3H, NCH2CH3). IR(KBr, cm-1) 2945 (CH3), 1710 (C=O), 1658 (C=C), 1378, 1390(NO2), 1660, 1621, 1538(benzene).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9628 (4)0.8187 (2)0.8649 (3)0.0521 (7)
C20.9304 (4)0.8215 (3)0.7596 (2)0.0559 (8)
H21.00300.87790.72590.067*
C30.7857 (4)0.7376 (3)0.7052 (2)0.0540 (8)
H30.75810.73670.63310.065*
C40.6813 (4)0.6546 (2)0.7573 (2)0.0427 (6)
C50.7293 (4)0.6599 (3)0.8637 (2)0.0596 (8)
H50.66130.60360.89950.071*
C60.5256 (4)0.5591 (2)0.6992 (2)0.0451 (6)
H6A0.52050.56650.62490.054*
H6B0.54920.48960.71420.054*
C70.3021 (4)0.6592 (2)0.7287 (2)0.0480 (7)
H7A0.40570.71800.76640.058*
H7B0.19980.65010.76550.058*
C80.2535 (6)0.6925 (3)0.6212 (3)0.0785 (11)
H8A0.35400.70110.58430.118*
H8B0.22770.76180.62580.118*
H8C0.14750.63600.58460.118*
C90.2212 (3)0.4559 (2)0.73211 (18)0.0348 (5)
C100.1460 (5)0.4994 (3)0.9036 (2)0.0550 (8)
H10A0.09620.55790.91750.083*
H10B0.27710.52770.91880.083*
H10C0.10290.43950.94650.083*
C110.0970 (4)0.4176 (3)0.7564 (2)0.0519 (7)
C120.1607 (4)0.3915 (3)0.6418 (3)0.0650 (9)
H12A0.22900.31380.62830.098*
H12B0.05690.40850.60660.098*
H12C0.23730.43530.61690.098*
C130.2214 (3)0.3532 (2)0.69263 (19)0.0368 (6)
C140.1557 (4)0.2493 (2)0.7497 (2)0.0421 (6)
H140.11530.27520.81050.051*
C150.3084 (4)0.2029 (2)0.7966 (2)0.0542 (7)
H15A0.25320.12850.81710.065*
H15B0.38010.19690.74330.065*
C160.4344 (4)0.2730 (2)0.8897 (2)0.0500 (7)
C170.5633 (6)0.2214 (3)0.9493 (3)0.0795 (11)
H17A0.66640.27890.98730.119*
H17B0.60460.17920.90190.119*
H17C0.50190.17310.99720.119*
C180.0129 (4)0.1572 (2)0.6946 (2)0.0454 (6)
C190.0443 (5)0.1205 (3)0.5905 (3)0.0766 (11)
H190.04050.15350.54830.092*
C200.2016 (6)0.0346 (4)0.5483 (3)0.0891 (13)
H200.22010.01060.47820.107*
C210.3293 (5)0.0151 (3)0.6078 (3)0.0746 (11)
H210.43450.07240.57930.090*
C220.2985 (5)0.0214 (3)0.7100 (3)0.0661 (9)
C230.1431 (4)0.1059 (2)0.7539 (3)0.0581 (8)
H230.12580.12860.82420.070*
Cl11.14377 (13)0.92531 (8)0.93748 (8)0.0793 (3)
Cl20.45945 (18)0.04123 (10)0.78826 (12)0.1249 (6)
N10.8686 (4)0.7416 (2)0.9194 (2)0.0676 (8)
N20.3480 (3)0.55437 (17)0.72679 (16)0.0377 (5)
N30.0879 (3)0.45855 (18)0.79346 (17)0.0416 (5)
N40.2894 (3)0.34678 (19)0.59894 (18)0.0459 (6)
O10.2039 (3)0.4098 (2)0.8168 (2)0.0819 (8)
O20.2890 (3)0.41880 (18)0.53559 (15)0.0616 (6)
O30.3403 (3)0.26542 (19)0.57805 (18)0.0650 (6)
O40.4321 (3)0.36466 (18)0.91429 (17)0.0595 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0429 (16)0.0456 (16)0.0630 (19)0.0094 (13)0.0035 (14)0.0074 (14)
C20.0512 (17)0.0492 (17)0.0596 (19)0.0001 (14)0.0176 (15)0.0138 (14)
C30.0560 (18)0.0566 (18)0.0424 (16)0.0040 (14)0.0158 (14)0.0045 (13)
C40.0409 (14)0.0416 (14)0.0454 (15)0.0103 (12)0.0126 (12)0.0029 (12)
C50.0566 (19)0.0544 (18)0.0537 (19)0.0035 (15)0.0088 (15)0.0142 (14)
C60.0449 (15)0.0438 (15)0.0470 (16)0.0104 (12)0.0166 (12)0.0009 (12)
C70.0543 (17)0.0365 (14)0.0537 (17)0.0151 (13)0.0096 (13)0.0014 (12)
C80.104 (3)0.062 (2)0.072 (2)0.034 (2)0.004 (2)0.0170 (18)
C90.0377 (13)0.0398 (13)0.0273 (12)0.0119 (11)0.0069 (10)0.0048 (10)
C100.0659 (19)0.0668 (19)0.0377 (15)0.0243 (16)0.0184 (14)0.0012 (13)
C110.0449 (16)0.0550 (17)0.0609 (19)0.0194 (14)0.0162 (14)0.0080 (14)
C120.0472 (18)0.080 (2)0.066 (2)0.0234 (17)0.0005 (15)0.0007 (18)
C130.0363 (13)0.0391 (14)0.0337 (13)0.0075 (11)0.0109 (10)0.0009 (10)
C140.0458 (15)0.0363 (14)0.0398 (14)0.0068 (11)0.0067 (12)0.0007 (11)
C150.0574 (18)0.0411 (15)0.0588 (18)0.0132 (13)0.0013 (15)0.0030 (13)
C160.0471 (16)0.0479 (17)0.0512 (17)0.0095 (13)0.0079 (13)0.0063 (13)
C170.084 (3)0.064 (2)0.079 (3)0.0224 (19)0.022 (2)0.0009 (18)
C180.0453 (15)0.0348 (14)0.0536 (17)0.0101 (12)0.0059 (13)0.0043 (12)
C190.072 (2)0.080 (2)0.052 (2)0.0111 (19)0.0038 (17)0.0028 (17)
C200.086 (3)0.089 (3)0.057 (2)0.010 (2)0.013 (2)0.005 (2)
C210.055 (2)0.053 (2)0.094 (3)0.0023 (16)0.0104 (19)0.0010 (19)
C220.0543 (19)0.0384 (16)0.098 (3)0.0009 (14)0.0198 (18)0.0028 (17)
C230.0622 (19)0.0373 (15)0.069 (2)0.0038 (14)0.0196 (16)0.0040 (14)
Cl10.0610 (5)0.0625 (5)0.0888 (7)0.0048 (4)0.0140 (5)0.0050 (5)
Cl20.1075 (9)0.0734 (7)0.1642 (13)0.0375 (6)0.0766 (9)0.0304 (7)
N10.0650 (18)0.0645 (17)0.0553 (16)0.0018 (14)0.0001 (13)0.0126 (13)
N20.0418 (12)0.0355 (11)0.0369 (11)0.0115 (9)0.0115 (9)0.0027 (9)
N30.0413 (12)0.0477 (13)0.0389 (12)0.0151 (10)0.0144 (10)0.0016 (10)
N40.0456 (13)0.0450 (13)0.0420 (13)0.0053 (10)0.0122 (10)0.0092 (11)
O10.0523 (14)0.118 (2)0.0845 (18)0.0287 (14)0.0336 (13)0.0132 (16)
O20.0865 (16)0.0549 (13)0.0370 (11)0.0071 (11)0.0221 (11)0.0050 (10)
O30.0679 (14)0.0622 (14)0.0711 (15)0.0237 (11)0.0270 (12)0.0149 (11)
O40.0589 (13)0.0600 (14)0.0574 (13)0.0196 (11)0.0041 (10)0.0119 (10)
Geometric parameters (Å, º) top
C1—N11.321 (4)C11—C121.494 (4)
C1—C21.359 (4)C12—H12A0.9600
C1—Cl11.751 (3)C12—H12B0.9600
C2—C31.373 (4)C12—H12C0.9600
C2—H20.9300C13—N41.412 (3)
C3—C41.379 (4)C13—C141.513 (4)
C3—H30.9300C14—C181.527 (4)
C4—C51.374 (4)C14—C151.536 (4)
C4—C61.510 (4)C14—H140.9800
C5—N11.344 (4)C15—C161.508 (4)
C5—H50.9300C15—H15A0.9700
C6—N21.466 (3)C15—H15B0.9700
C6—H6A0.9700C16—O41.202 (3)
C6—H6B0.9700C16—C171.492 (5)
C7—N21.476 (3)C17—H17A0.9600
C7—C81.498 (4)C17—H17B0.9600
C7—H7A0.9700C17—H17C0.9600
C7—H7B0.9700C18—C231.380 (4)
C8—H8A0.9600C18—C191.383 (4)
C8—H8B0.9600C19—C201.391 (5)
C8—H8C0.9600C19—H190.9300
C9—N21.343 (3)C20—C211.364 (6)
C9—C131.387 (3)C20—H200.9300
C9—N31.412 (3)C21—C221.359 (5)
C10—N31.467 (3)C21—H210.9300
C10—H10A0.9600C22—C231.378 (4)
C10—H10B0.9600C22—Cl21.749 (4)
C10—H10C0.9600C23—H230.9300
C11—O11.215 (4)N4—O21.244 (3)
C11—N31.377 (4)N4—O31.249 (3)
N1—C1—C2125.7 (3)C9—C13—C14121.2 (2)
N1—C1—Cl1115.7 (2)N4—C13—C14119.8 (2)
C2—C1—Cl1118.6 (2)C13—C14—C18117.0 (2)
C1—C2—C3117.1 (3)C13—C14—C15114.0 (2)
C1—C2—H2121.4C18—C14—C15111.8 (2)
C3—C2—H2121.4C13—C14—H14104.1
C2—C3—C4120.2 (3)C18—C14—H14104.1
C2—C3—H3119.9C15—C14—H14104.1
C4—C3—H3119.9C16—C15—C14113.8 (2)
C5—C4—C3117.3 (3)C16—C15—H15A108.8
C5—C4—C6121.4 (2)C14—C15—H15A108.8
C3—C4—C6121.3 (3)C16—C15—H15B108.8
N1—C5—C4124.1 (3)C14—C15—H15B108.8
N1—C5—H5118.0H15A—C15—H15B107.7
C4—C5—H5118.0O4—C16—C17122.0 (3)
N2—C6—C4112.9 (2)O4—C16—C15122.3 (3)
N2—C6—H6A109.0C17—C16—C15115.7 (3)
C4—C6—H6A109.0C16—C17—H17A109.5
N2—C6—H6B109.0C16—C17—H17B109.5
C4—C6—H6B109.0H17A—C17—H17B109.5
H6A—C6—H6B107.8C16—C17—H17C109.5
N2—C7—C8112.1 (2)H17A—C17—H17C109.5
N2—C7—H7A109.2H17B—C17—H17C109.5
C8—C7—H7A109.2C23—C18—C19117.6 (3)
N2—C7—H7B109.2C23—C18—C14117.3 (3)
C8—C7—H7B109.2C19—C18—C14125.2 (3)
H7A—C7—H7B107.9C18—C19—C20120.6 (3)
C7—C8—H8A109.5C18—C19—H19119.7
C7—C8—H8B109.5C20—C19—H19119.7
H8A—C8—H8B109.5C21—C20—C19121.2 (4)
C7—C8—H8C109.5C21—C20—H20119.4
H8A—C8—H8C109.5C19—C20—H20119.4
H8B—C8—H8C109.5C22—C21—C20118.1 (3)
N2—C9—C13126.1 (2)C22—C21—H21120.9
N2—C9—N3115.3 (2)C20—C21—H21120.9
C13—C9—N3118.3 (2)C21—C22—C23121.8 (3)
N3—C10—H10A109.5C21—C22—Cl2119.1 (3)
N3—C10—H10B109.5C23—C22—Cl2119.1 (3)
H10A—C10—H10B109.5C22—C23—C18120.7 (3)
N3—C10—H10C109.5C22—C23—H23119.6
H10A—C10—H10C109.5C18—C23—H23119.6
H10B—C10—H10C109.5C1—N1—C5115.6 (3)
O1—C11—N3119.2 (3)C9—N2—C6120.5 (2)
O1—C11—C12121.7 (3)C9—N2—C7121.1 (2)
N3—C11—C12119.0 (3)C6—N2—C7117.4 (2)
C11—C12—H12A109.5C11—N3—C9122.8 (2)
C11—C12—H12B109.5C11—N3—C10117.8 (2)
H12A—C12—H12B109.5C9—N3—C10119.3 (2)
C11—C12—H12C109.5O2—N4—O3120.6 (2)
H12A—C12—H12C109.5O2—N4—C13119.8 (2)
H12B—C12—H12C109.5O3—N4—C13119.5 (2)
C9—C13—N4118.9 (2)
N1—C1—C2—C30.7 (5)C20—C21—C22—C230.3 (6)
Cl1—C1—C2—C3179.0 (2)C20—C21—C22—Cl2179.7 (3)
C1—C2—C3—C40.6 (5)C21—C22—C23—C180.5 (5)
C2—C3—C4—C50.4 (5)Cl2—C22—C23—C18179.9 (3)
C2—C3—C4—C6177.9 (3)C19—C18—C23—C220.2 (5)
C3—C4—C5—N11.3 (5)C14—C18—C23—C22179.5 (3)
C6—C4—C5—N1178.7 (3)C2—C1—N1—C50.1 (5)
C5—C4—C6—N264.1 (4)Cl1—C1—N1—C5179.8 (3)
C3—C4—C6—N2118.5 (3)C4—C5—N1—C11.1 (5)
N2—C9—C13—N435.2 (4)C13—C9—N2—C614.8 (4)
N3—C9—C13—N4152.1 (2)N3—C9—N2—C6158.1 (2)
N2—C9—C13—C14143.0 (3)C13—C9—N2—C7153.5 (3)
N3—C9—C13—C1429.7 (4)N3—C9—N2—C733.6 (3)
C9—C13—C14—C18116.5 (3)C4—C6—N2—C9143.8 (2)
N4—C13—C14—C1865.4 (3)C4—C6—N2—C747.4 (3)
C9—C13—C14—C15110.5 (3)C8—C7—N2—C994.4 (3)
N4—C13—C14—C1567.7 (3)C8—C7—N2—C674.3 (3)
C13—C14—C15—C1671.6 (3)O1—C11—N3—C9170.8 (3)
C18—C14—C15—C16152.9 (3)C12—C11—N3—C913.3 (4)
C14—C15—C16—O410.8 (4)O1—C11—N3—C104.9 (4)
C14—C15—C16—C17169.4 (3)C12—C11—N3—C10170.9 (3)
C13—C14—C18—C23137.1 (3)N2—C9—N3—C11126.2 (3)
C15—C14—C18—C2388.9 (3)C13—C9—N3—C1160.3 (3)
C13—C14—C18—C1943.7 (4)N2—C9—N3—C1058.1 (3)
C15—C14—C18—C1990.4 (4)C13—C9—N3—C10115.4 (3)
C23—C18—C19—C200.3 (6)C9—C13—N4—O224.5 (4)
C14—C18—C19—C20179.0 (3)C14—C13—N4—O2157.2 (2)
C18—C19—C20—C210.4 (7)C9—C13—N4—O3159.3 (2)
C19—C20—C21—C220.2 (7)C14—C13—N4—O318.9 (4)

Experimental details

Crystal data
Chemical formulaC23H26Cl2N4O4
Mr493.38
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.7948 (13), 12.649 (2), 13.021 (2)
α, β, γ (°)91.364 (3), 98.765 (2), 107.878 (3)
V3)1204.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.943, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
7096, 4200, 3870
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.148, 1.17
No. of reflections4200
No. of parameters302
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.38

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The coauthors thank the National Natural Science Foundation of China (21042010, 21102092 and 30870560) for financial support.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKashiwada, Y. (1996). Agrochem. Jpn, 68, 18–19.  Google Scholar
First citationMinamida, I., Iwanaga, K. & Tabuchi, T. (1993). J. Pestic. Sci. 18, 31–40.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomizawa, M. & Casida, J. E. (2000). Toxicol. Appl. Pharmacol. 169, 114–120.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, W. W., Yang, X. B., Chen, W. D., Xu, X. Y., Li, L., Zhai, H. B. & Li, Z. (2010). J. Agric. Food Chem. 58, 2741–2745.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds