organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(3-Chloro-2-methyl­phen­yl)imino­meth­yl]phenol

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, bDepartment of Physics, Faculty of Science, An Najah National University, Nabtus West Bank, Palestinian Territories, cPG Department of Studies in Chemistry, JSS College of Arts Commerce and Science, Ooty Road, Mysore 570 025, India, and dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in

(Received 5 September 2012; accepted 16 October 2012; online 20 October 2012)

In the title compound, C14H12ClNO, the dihedral angle between the aromatic rings is 39.84 (7)°. In th crystal, mol­ecules are connected by O—H⋯N hydrogen bonds into chains parallel to [001]. In addition, a C—H⋯π contact occurs.

Related literature

For the bioactivity of the title compound, see: Corke et al. (1979[Corke, T. C., Bunce, N. J., Beamount, A. L. & Merrick, R. L. (1979). J. Agric. Food Chem. 27, 644-646.]); Gorrad & Manson (1989[Gorrad, J. W. & Manson, D. (1989). Xenobiotica, 16, 933-955.]). For related structures, see: Jothi et al. (2012[Jothi, L., Vasuki, G., Babu, R. R. & Ramamurthi, K. (2012). Acta Cryst. E68, o772.]); Yaeghoobi et al. (2009[Yaeghoobi, M., Rahman, N. A. & Ng, S. W. (2009). Acta Cryst. E65, o1070.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO

  • Mr = 245.70

  • Orthorhombic, P 21 21 21

  • a = 7.5271 (9) Å

  • b = 12.4095 (15) Å

  • c = 12.5800 (14) Å

  • V = 1175.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 103 K

  • 0.26 × 0.20 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • 6050 measured reflections

  • 2042 independent reflections

  • 1856 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.123

  • S = 1.07

  • 2042 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N3i 0.84 2.05 2.854 (3) 160
C17—H17CCgii 0.98 2.73 3.649 (2) 157
Symmetry codes: (i) [-x-{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The investigation of microbial degradation by hazardous compounds such as anilines containing a methyl and a chlorosubstituent is of interest because of their lipophilic character and affinity to interact with DNA (Gorrad & Manson, 1989).

The ORTEP drawing of the title molecule is shown in Fig. 1. The 4-hydroxybenzylidene system is nearly planar and its geometry is similar to 4-chloro-2-[(E)-2-(4-methoxyphenyl)-ethyliminomethyl]phenol (Yaeghoobi et al., 2009). The dihedral angle between the methylphenol and chloromethylphenylimino ring systems is 39.84 (7)°.

The molecules are connected by O—H···N interactions into chains along the [0 0 1] direction (Fig. 2). There is a weak contact of the type C—H···π [1/2-x,-y,-1/2+z] with a C···Cg distance of 3.649 (2) Å between the methyl group of the chloromethyl ring and the phenol ring.

Related literature top

For the bioactivity of the title compound, see: Corke et al. (1979); Gorrad & Manson (1989). For related structures, see: Jothi et al. (2012); Yaeghoobi et al. (2009).

Experimental top

Equimolar concentrations of 4-hydoxybenzaldehyde (0.003 mol) and 3-chloro-2-methylbenzenamine (0.003 mol) were refluxed for 5 h using methanol (25 ml) as solvent. The progress of the reaction was followed by TLC until the reaction was complete. The reaction product was cooled to 273 K. The precipitate was filtered and washed with diethyl ether. The residue was recrystallized from methanol. Brown single crystals were obtained.

Refinement top

In the absence of significant anomalous dispersion effects Friedel pairs have been merged. All the hydrogen atoms of the compound are fixed geometrically (O—H = 0.88 Å and C—H= 0.93–0.97 Å) and allowed to ride on their parent atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound with 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed along [1 - 1 0] direction. O—H···N hydrogen bonds are indicated by dashed lines.
4-[(3-Chloro-2-methylphenyl)iminomethyl]phenol top
Crystal data top
C14H12ClNOF(000) = 512
Mr = 245.70Dx = 1.389 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2042 reflections
a = 7.5271 (9) Åθ = 2.3–30.6°
b = 12.4095 (15) ŵ = 0.31 mm1
c = 12.5800 (14) ÅT = 103 K
V = 1175.1 (2) Å3Block, brown
Z = 40.26 × 0.20 × 0.18 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
1856 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 30.6°, θmin = 2.3°
Detector resolution: 16.0839 pixels mm-1h = 107
ω scansk = 1716
6050 measured reflectionsl = 1617
2042 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0838P)2 + 0.0338P]
where P = (Fo2 + 2Fc2)/3
2042 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C14H12ClNOV = 1175.1 (2) Å3
Mr = 245.70Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.5271 (9) ŵ = 0.31 mm1
b = 12.4095 (15) ÅT = 103 K
c = 12.5800 (14) Å0.26 × 0.20 × 0.18 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
1856 reflections with I > 2σ(I)
6050 measured reflectionsRint = 0.037
2042 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.07Δρmax = 0.71 e Å3
2042 reflectionsΔρmin = 0.46 e Å3
155 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.20725 (8)0.07415 (5)0.21487 (5)0.0206 (2)
O20.2400 (2)0.06296 (14)1.08991 (14)0.0200 (5)
N30.0186 (3)0.11403 (16)0.60025 (16)0.0151 (5)
C40.0219 (3)0.16256 (18)0.50001 (19)0.0142 (6)
C50.0934 (3)0.09792 (18)0.41844 (19)0.0144 (6)
C60.1173 (3)0.1473 (2)0.31955 (19)0.0147 (6)
C70.0749 (3)0.2551 (2)0.3006 (2)0.0182 (7)
C80.0060 (3)0.3171 (2)0.3831 (2)0.0192 (7)
C90.0203 (3)0.27089 (18)0.4822 (2)0.0165 (6)
C100.0205 (3)0.16597 (19)0.68499 (19)0.0157 (6)
C110.0336 (3)0.13243 (19)0.79125 (19)0.0146 (6)
C120.1136 (3)0.03193 (19)0.81002 (19)0.0162 (6)
C130.1794 (3)0.00693 (19)0.91011 (19)0.0154 (6)
C140.1689 (3)0.08211 (19)0.99228 (18)0.0148 (6)
C150.0820 (3)0.18052 (19)0.9758 (2)0.0170 (6)
C160.0153 (3)0.20481 (19)0.8757 (2)0.0161 (6)
C170.1424 (3)0.01811 (19)0.4369 (2)0.0191 (7)
H20.288100.001901.090400.0300*
H70.092800.285800.232300.0220*
H80.022800.390700.371500.0230*
H90.067300.313100.538500.0200*
H100.088600.230100.678300.0190*
H120.122700.019100.754000.0190*
H130.231600.061600.922700.0180*
H150.068900.230301.032600.0200*
H160.043600.271600.864500.0190*
H17A0.096000.062400.378700.0290*
H17B0.091000.042500.504400.0290*
H17C0.272000.025000.439800.0290*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0193 (3)0.0256 (3)0.0169 (3)0.0005 (2)0.0037 (2)0.0025 (2)
O20.0225 (9)0.0216 (8)0.0160 (8)0.0038 (7)0.0057 (7)0.0002 (7)
N30.0108 (9)0.0184 (9)0.0160 (9)0.0002 (7)0.0016 (8)0.0019 (7)
C40.0096 (10)0.0162 (10)0.0168 (11)0.0014 (8)0.0009 (9)0.0013 (8)
C50.0083 (9)0.0180 (10)0.0170 (11)0.0006 (8)0.0017 (9)0.0008 (8)
C60.0082 (9)0.0213 (10)0.0146 (10)0.0013 (8)0.0015 (8)0.0017 (8)
C70.0150 (11)0.0215 (11)0.0180 (12)0.0024 (9)0.0001 (9)0.0043 (9)
C80.0147 (11)0.0183 (11)0.0246 (12)0.0002 (9)0.0011 (10)0.0039 (9)
C90.0108 (10)0.0173 (11)0.0214 (12)0.0014 (8)0.0012 (9)0.0009 (9)
C100.0108 (10)0.0171 (10)0.0191 (11)0.0005 (8)0.0020 (9)0.0000 (8)
C110.0104 (9)0.0191 (10)0.0144 (10)0.0004 (8)0.0002 (9)0.0009 (9)
C120.0133 (10)0.0189 (10)0.0164 (11)0.0002 (8)0.0002 (9)0.0003 (8)
C130.0121 (10)0.0175 (10)0.0167 (10)0.0003 (8)0.0017 (9)0.0002 (9)
C140.0121 (9)0.0175 (10)0.0148 (10)0.0013 (8)0.0016 (8)0.0001 (8)
C150.0172 (11)0.0178 (10)0.0160 (11)0.0013 (9)0.0001 (10)0.0026 (8)
C160.0135 (11)0.0151 (10)0.0196 (11)0.0014 (8)0.0012 (9)0.0008 (9)
C170.0185 (12)0.0180 (11)0.0207 (12)0.0029 (9)0.0033 (10)0.0003 (9)
Geometric parameters (Å, º) top
Cl1—C61.737 (2)C12—C131.388 (3)
O2—C141.361 (3)C13—C141.395 (3)
O2—H20.8400C14—C151.401 (3)
N3—C41.430 (3)C15—C161.389 (4)
N3—C101.280 (3)C7—H70.9500
C4—C91.399 (3)C8—H80.9500
C4—C51.409 (3)C9—H90.9500
C5—C61.398 (3)C10—H100.9500
C5—C171.504 (3)C12—H120.9500
C6—C71.396 (3)C13—H130.9500
C7—C81.392 (3)C15—H150.9500
C8—C91.386 (4)C16—H160.9500
C10—C111.458 (3)C17—H17A0.9800
C11—C161.398 (3)C17—H17B0.9800
C11—C121.405 (3)C17—H17C0.9800
C14—O2—H2109.00C11—C16—C15120.9 (2)
C4—N3—C10118.2 (2)C6—C7—H7120.00
N3—C4—C5118.9 (2)C8—C7—H7120.00
C5—C4—C9121.1 (2)C7—C8—H8120.00
N3—C4—C9119.8 (2)C9—C8—H8120.00
C4—C5—C6116.6 (2)C4—C9—H9120.00
C4—C5—C17121.7 (2)C8—C9—H9120.00
C6—C5—C17121.7 (2)N3—C10—H10118.00
Cl1—C6—C5119.71 (18)C11—C10—H10118.00
Cl1—C6—C7117.42 (18)C11—C12—H12120.00
C5—C6—C7122.9 (2)C13—C12—H12120.00
C6—C7—C8119.2 (2)C12—C13—H13120.00
C7—C8—C9119.7 (2)C14—C13—H13120.00
C4—C9—C8120.6 (2)C14—C15—H15120.00
N3—C10—C11123.8 (2)C16—C15—H15120.00
C10—C11—C16119.1 (2)C11—C16—H16120.00
C12—C11—C16119.0 (2)C15—C16—H16119.00
C10—C11—C12121.8 (2)C5—C17—H17A110.00
C11—C12—C13120.3 (2)C5—C17—H17B109.00
C12—C13—C14120.2 (2)C5—C17—H17C109.00
O2—C14—C13122.0 (2)H17A—C17—H17B109.00
O2—C14—C15118.0 (2)H17A—C17—H17C109.00
C13—C14—C15120.0 (2)H17B—C17—H17C109.00
C14—C15—C16119.5 (2)
C10—N3—C4—C5138.4 (2)C6—C7—C8—C90.4 (3)
C10—N3—C4—C945.7 (3)C7—C8—C9—C40.0 (3)
C4—N3—C10—C11171.9 (2)N3—C10—C11—C128.7 (4)
N3—C4—C5—C6175.1 (2)N3—C10—C11—C16167.4 (2)
N3—C4—C5—C175.2 (3)C10—C11—C12—C13173.6 (2)
C9—C4—C5—C60.8 (3)C16—C11—C12—C132.5 (3)
C9—C4—C5—C17178.9 (2)C10—C11—C16—C15173.2 (2)
N3—C4—C9—C8175.3 (2)C12—C11—C16—C152.9 (3)
C5—C4—C9—C80.6 (3)C11—C12—C13—C141.0 (3)
C4—C5—C6—Cl1179.21 (17)C12—C13—C14—O2176.5 (2)
C4—C5—C6—C70.5 (3)C12—C13—C14—C154.0 (3)
C17—C5—C6—Cl10.5 (3)O2—C14—C15—C16177.0 (2)
C17—C5—C6—C7179.2 (2)C13—C14—C15—C163.5 (3)
Cl1—C6—C7—C8178.66 (18)C14—C15—C16—C110.0 (3)
C5—C6—C7—C80.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···N3i0.842.052.854 (3)160
C12—H12···O2ii0.952.373.204 (3)146
C17—H17B···N30.982.432.895 (3)108
C17—H17C···Cgiii0.982.733.649 (2)157
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x1/2, y, z1/2; (iii) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC14H12ClNO
Mr245.70
Crystal system, space groupOrthorhombic, P212121
Temperature (K)103
a, b, c (Å)7.5271 (9), 12.4095 (15), 12.5800 (14)
V3)1175.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.26 × 0.20 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6050, 2042, 1856
Rint0.037
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.123, 1.07
No. of reflections2042
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.46

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···N3i0.84002.05002.854 (3)160.00
C17—H17C···Cgii0.982.733.649 (2)157
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1/2, y, z1/2.
 

References

First citationCorke, T. C., Bunce, N. J., Beamount, A. L. & Merrick, R. L. (1979). J. Agric. Food Chem. 27, 644–646.  CrossRef CAS Web of Science Google Scholar
First citationGorrad, J. W. & Manson, D. (1989). Xenobiotica, 16, 933–955.  Google Scholar
First citationJothi, L., Vasuki, G., Babu, R. R. & Ramamurthi, K. (2012). Acta Cryst. E68, o772.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaeghoobi, M., Rahman, N. A. & Ng, S. W. (2009). Acta Cryst. E65, o1070.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds