organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6-Tri­nitro­phenyl 4-methyl­benzoate

aDepartamento de Química - Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil, and cDepartamento de Química, Universidade Federal de São Carlos, CEP 13565-905, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

(Received 15 September 2012; accepted 5 October 2012; online 13 October 2012)

In the title compound, C14H9N3O8, the benzene rings form a dihedral angle of 69.02 (5)°. The central ester group is rotated by 25.86 (9)° relative to the p-tolyl group. In the crystal, the mol­ecules are linked by C—H⋯O inter­actions into helical chains along [010].

Related literature

For optical, pharmacological and crystalline properties of picric acid, see: Khan et al. (2010[Khan, I. M., Ahmad, A. & Oves, M. (2010). Spectrochim. Acta Part A, 77, 1059-1064.]); Zaderenko et al. (1997[Zaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961-967.]). For picric acid derivatives, see: Bertolasi et al. (2011[Bertolasi, V., Gilli, P. & Gilli, G. (2011). Cryst. Growth Des. 11, 2724-2735.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For similar structures, see: Moreno-Fuquen et al. (2012[Moreno-Fuquen, R., Mosquera, F., Ellena, J. & Tenorio, J. C. (2012). Acta Cryst. E68, o2187.]); Bibi et al. (2009[Bibi, U., Siddiqi, H. M., Bolte, M. & Akhter, Z. (2009). Acta Cryst. E65, o3038.]); Shibakami et al. (1994[Shibakami, M., Tamura, M., Arimura, T., Kurosawa, S. & Sekiya, A. (1994). Acta Cryst. C50, 592-594.]); Shibakami & Sekiya (1995[Shibakami, M. & Sekiya, A. (1995). Acta Cryst. C51, 326-330.]); For hydrogen bonding, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and for supra­molecular aggregation behaviour of isomers, see: Glidewell et al. (2005[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2005). Acta Cryst. B61, 227-237.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9N3O8

  • Mr = 347.24

  • Monoclinic, P 21 /c

  • a = 7.6126 (2) Å

  • b = 8.2124 (2) Å

  • c = 23.9893 (7) Å

  • β = 94.448 (1)°

  • V = 1495.24 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 295 K

  • 0.27 × 0.22 × 0.18 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 5494 measured reflections

  • 3044 independent reflections

  • 2296 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.123

  • S = 1.02

  • 3044 reflections

  • 227 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O8i 0.93 2.50 3.4286 (19) 175
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, C14H9O8N3 [2,4,6-trinitrophenyl 4-methylbenzoate] (I), belongs to a group of molecules known as nitro aryl benzoates. Recently, we have been investigating the synthesis, properties and main features of these nitroaromatic compounds, in particular - the derivatives of picric acid (trinitrophenol - TNP) (Bertolasi et al., 2011). These compounds have never been synthesized before and there is no any prior entries in CCSD related to such esters, except 2,4,6-trinitrophenyl 3-methylbenzoate (TNP3MeBA), an isomer of the title compound, that we recently published (Moreno-Fuquen et al., 2012). Our special interest in TNP is attributable to the optical, pharmacological and solid-state properties of its molecular adducts (Khan et al., 2010); Zaderenko et al., 1997) and the absence of any information of the picric acid as a part of aryl esters that probably can show similar or more interesting properties. In order to find out the molecular conformation of (I) and its supramolecular behavior, the title compound was synthesized. The molecular structure of (I) is presented on Fig. 1 with the numbering scheme similar to that for TNP-3MeBA in order to simplify structural comparisons. In the title structure, the phenolic C1—O7 bond length is significantly shortened [1.3715 (17) Å] and the benzoic C7—O7 bond length is significantly elongated [1.3898 (17) Å] as compared to other phenylbenzoates systems [1.422 (5) Å and 1.354 (5) Å respectively (Shibakami et al., 1994) and 1.415 (2) Å and 1.351 (2) Å respectively (Shibakami & Sekiya, 1995)]. However, these parameters are pretty close to the values presented in other crystal systems which contain similar substituents with respect to this structure, more specifically when there is nitro substituent in any of the benzene rings at the benzoate [for C1—O7= 1.395 (2) Å and for C7—O7= 1.376 (3) Å (Bibi et al., 2009) and 1.3676 (17) Å and 1.3820 (18) Å respectively (Moreno-Fuquen et al., 2012)]. Other bond lengths and bond angles of (I) agree with the literature values (Allen et al., 1987). The benzene rings of (I) form a dihedral angle of 69.02 (5)°, compared with values of 87.48 (5)° in TNP3MeBA. The central ester moiety forms an angle of 25.86 (9)° with the methylbenzene ring to which it is attached. This value is similar to the corresponding angle in its structural isomer TNP3MeBA - 19.42 (7)°. The nitro groups form dihedral angles with the adjacent benzene ring of 30.57 (11)°, 14.75 (16)° and 7.37 (17)° for O1—N1—O2, O3—N2—O4 and O5—N3—O6, respectively. The molecules are packed forming weak interactions C—H···O in one-dimensional helical chains which grow along [010] (see Fig. 2). The C3 atom of the phenyl ring at (x,y,z) acts as a hydrogen-bond donor to carbonyl atom O8 at (-x + 1,+y + 1/2,-z + 1/2) (see Table 1; Nardelli, 1995). We have found that (I) and its isomer TNP3MeBA show a marked similarity in terms of spatial group, unit-cell parameters and finally the intermolecular interactions given the supramolecular aggregation of these isomers. This behavior is very uncommon in compounds showing constitutional isomerism, since small changes in the molecular structures of the isomers usually lead to large changes in molecular aggregation of the structures (Glidewell et al., 2005).

Related literature top

For optical, pharmacological and crystalline properties of picric acid, see: Khan et al. (2010); Zaderenko et al. (1997). For picric acid derivatives, see: Bertolasi et al. (2011); . For bond-length data, see: Allen et al. (1987). For similar structures, see: Moreno-Fuquen et al. (2012); Bibi et al. (2009); Shibakami et al. (1994); Shibakami & Sekiya (1995); For hydrogen bonding, see: Nardelli (1995) and for supramolecular aggregation behaviour of isomers, see: Glidewell et al. (2005).

Experimental top

The reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. The title molecule was obtained through a two-step reaction. First the 4-methylbenzoic acid (0.25 g, 1.836 mmol) was refluxed in an excess of thionyl chloride (10 ml) during an hour. Then thionyl chloride was distilled off under reduced pressure to purify the 4-methylbenzoyl chloride obtained as a pale yellow traslucent liquid. The same reaction flask was rearranged and a solution of picric acid (0.42 g, 1.835 mmol) in acetonitrile was added dropwise with constant stirring. The reaction mixture was let to reflux for about an hour. A pale yellow solid was obtained after leaving the solvent to evaporate. The solid was washed with distilled water and cold methanol to eliminate impurities. Crystals of good quality and suitable for single-crystal X-ray diffraction were grown from acetonitrile. IR spectra were recorded on a FT—IR SHIMADZU IR-Affinity-1 spectrophotometer. Pale Yellow crystals; yield 38%; m.p 417 (1) K. IR (KBr) 3112.86 cm-1, 3086.07 cm-1 (aromatic C—H); 2962.07 cm-1, 2915.70 cm-1 (methyl C—H); 1754.68 cm-1 (ester C=O); 1609.43 cm-1 (C=C); 1549.55 cm-1, 1341.69 cm-1 (–NO2); 1224.07 cm-1 (C(=O)—O).

Refinement top

All the H-atoms attached to C atoms were positioned at geometrically idealized positions and treated as riding with C—H= 0.93 Å (aromatic) and 0.96 Å (methyl) with Uiso(H) = 1.2 Ueq (aromatic) and Uiso(H) = 1.5 Ueq (methyl). The positions of H atoms of the methyl group were rotationally optimized

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme of the title compound with displacement ellipsoids drawn at 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing the formation of helical chains along [010]. Symmetry code: (i) -x+1,+y+1/2,-z+1/2.
2,4,6-Trinitrophenyl 4-methylbenzoate top
Crystal data top
C14H9N3O8F(000) = 712
Mr = 347.24Dx = 1.543 Mg m3
Monoclinic, P21/cMelting point: 417(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.6126 (2) ÅCell parameters from 3076 reflections
b = 8.2124 (2) Åθ = 3.0–26.4°
c = 23.9893 (7) ŵ = 0.13 mm1
β = 94.448 (1)°T = 295 K
V = 1495.24 (7) Å3Block, pale-yellow
Z = 40.27 × 0.22 × 0.18 mm
Data collection top
Nonius KappaCCD
diffractometer
2296 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 26.4°, θmin = 3.0°
CCD rotation images, thick slices scansh = 99
5494 measured reflectionsk = 910
3044 independent reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0698P)2 + 0.224P]
where P = (Fo2 + 2Fc2)/3
3044 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C14H9N3O8V = 1495.24 (7) Å3
Mr = 347.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6126 (2) ŵ = 0.13 mm1
b = 8.2124 (2) ÅT = 295 K
c = 23.9893 (7) Å0.27 × 0.22 × 0.18 mm
β = 94.448 (1)°
Data collection top
Nonius KappaCCD
diffractometer
2296 reflections with I > 2σ(I)
5494 measured reflectionsRint = 0.017
3044 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.123H-atom parameters constrained
S = 1.02Δρmax = 0.18 e Å3
3044 reflectionsΔρmin = 0.24 e Å3
227 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4307 (2)0.4914 (2)0.33344 (6)0.0840 (5)
O20.56533 (16)0.66653 (15)0.28637 (6)0.0633 (4)
O30.5292 (2)0.5772 (3)0.08518 (7)0.1011 (6)
O40.3254 (2)0.4222 (3)0.04835 (7)0.1007 (6)
O50.18224 (17)0.33867 (18)0.14637 (6)0.0732 (4)
O60.17197 (15)0.33696 (15)0.23563 (5)0.0595 (3)
O70.09683 (13)0.46979 (12)0.29293 (4)0.0407 (3)
O80.16920 (15)0.20662 (13)0.30759 (5)0.0525 (3)
N10.45379 (16)0.56271 (17)0.29052 (6)0.0469 (3)
N20.3987 (2)0.4953 (2)0.08753 (7)0.0664 (4)
N30.10536 (17)0.35918 (15)0.19191 (6)0.0460 (3)
C10.17239 (18)0.46265 (16)0.24291 (6)0.0362 (3)
C20.34413 (18)0.51938 (17)0.23953 (6)0.0386 (3)
C30.41940 (19)0.53543 (18)0.18945 (7)0.0433 (4)
H30.53180.57870.18780.052*
C40.3213 (2)0.48477 (19)0.14189 (7)0.0462 (4)
C50.1537 (2)0.42336 (19)0.14288 (7)0.0457 (4)
H50.09180.38780.11020.055*
C60.07943 (18)0.41560 (17)0.19332 (6)0.0393 (3)
C70.09911 (18)0.32603 (18)0.32354 (7)0.0396 (4)
C80.00660 (19)0.34449 (18)0.37471 (7)0.0420 (4)
C90.1286 (2)0.4560 (2)0.37848 (7)0.0516 (4)
H90.15800.52730.34910.062*
C100.2198 (2)0.4607 (2)0.42623 (8)0.0618 (5)
H100.31180.53440.42830.074*
C110.1768 (2)0.3578 (3)0.47078 (7)0.0595 (5)
C120.0394 (2)0.2490 (2)0.46659 (7)0.0617 (5)
H120.00740.18030.49650.074*
C130.0511 (2)0.2402 (2)0.41905 (7)0.0537 (4)
H130.14140.16480.41670.064*
C140.2789 (3)0.3625 (4)0.52240 (9)0.0880 (7)
H14A0.20150.33700.55470.132*
H14B0.37270.28410.51870.132*
H14C0.32740.46930.52650.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0738 (9)0.1154 (12)0.0599 (8)0.0385 (9)0.0135 (7)0.0239 (8)
O20.0497 (7)0.0579 (8)0.0813 (9)0.0212 (6)0.0008 (6)0.0053 (6)
O30.0687 (10)0.1650 (17)0.0728 (10)0.0334 (11)0.0253 (8)0.0139 (11)
O40.0954 (12)0.1528 (17)0.0567 (9)0.0247 (12)0.0243 (8)0.0252 (10)
O50.0516 (7)0.0986 (11)0.0677 (9)0.0220 (7)0.0064 (6)0.0147 (7)
O60.0435 (6)0.0694 (8)0.0667 (8)0.0163 (6)0.0113 (6)0.0084 (6)
O70.0426 (6)0.0342 (5)0.0468 (6)0.0005 (4)0.0123 (5)0.0012 (4)
O80.0546 (7)0.0402 (6)0.0648 (8)0.0080 (5)0.0179 (6)0.0051 (5)
N10.0364 (7)0.0469 (8)0.0571 (8)0.0044 (6)0.0021 (5)0.0011 (6)
N20.0529 (9)0.0924 (12)0.0560 (10)0.0001 (9)0.0169 (8)0.0064 (9)
N30.0384 (7)0.0389 (7)0.0608 (9)0.0058 (5)0.0028 (7)0.0017 (6)
C10.0359 (7)0.0275 (7)0.0461 (8)0.0019 (5)0.0083 (6)0.0008 (6)
C20.0350 (7)0.0306 (7)0.0504 (8)0.0001 (6)0.0036 (6)0.0003 (6)
C30.0338 (7)0.0396 (8)0.0576 (10)0.0003 (6)0.0103 (7)0.0051 (7)
C40.0440 (8)0.0482 (9)0.0478 (9)0.0046 (7)0.0117 (7)0.0044 (7)
C50.0443 (8)0.0447 (8)0.0481 (9)0.0007 (7)0.0036 (7)0.0014 (7)
C60.0334 (7)0.0331 (7)0.0515 (9)0.0006 (6)0.0038 (6)0.0007 (6)
C70.0318 (7)0.0368 (8)0.0503 (9)0.0017 (6)0.0035 (6)0.0033 (7)
C80.0362 (7)0.0431 (8)0.0469 (9)0.0026 (6)0.0037 (6)0.0027 (7)
C90.0464 (9)0.0600 (10)0.0492 (10)0.0113 (8)0.0083 (7)0.0104 (8)
C100.0504 (10)0.0798 (13)0.0566 (11)0.0186 (9)0.0125 (8)0.0066 (9)
C110.0529 (10)0.0821 (13)0.0440 (10)0.0031 (9)0.0074 (8)0.0034 (9)
C120.0652 (11)0.0722 (12)0.0472 (10)0.0042 (10)0.0009 (8)0.0161 (9)
C130.0493 (9)0.0575 (10)0.0542 (10)0.0091 (8)0.0031 (8)0.0082 (8)
C140.0818 (15)0.130 (2)0.0552 (13)0.0046 (14)0.0247 (11)0.0093 (13)
Geometric parameters (Å, º) top
O1—N11.2089 (18)C5—C61.376 (2)
O2—N11.2128 (17)C5—H50.9300
O3—N21.204 (2)C7—C81.470 (2)
O4—N21.214 (2)C8—C91.386 (2)
O5—N31.2106 (18)C8—C131.387 (2)
O6—N31.2135 (17)C9—C101.385 (2)
O7—C11.3715 (17)C9—H90.9300
O7—C71.3898 (17)C10—C111.382 (3)
O8—C71.1936 (18)C10—H100.9300
N1—C21.470 (2)C11—C121.385 (3)
N2—C41.474 (2)C11—C141.513 (2)
N3—C61.4790 (19)C12—C131.379 (2)
C1—C61.391 (2)C12—H120.9300
C1—C21.396 (2)C13—H130.9300
C2—C31.377 (2)C14—H14A0.9600
C3—C41.378 (2)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C4—C51.374 (2)
C1—O7—C7115.91 (11)O8—C7—O7121.07 (13)
O1—N1—O2124.00 (14)O8—C7—C8127.42 (14)
O1—N1—C2118.73 (13)O7—C7—C8111.50 (12)
O2—N1—C2117.24 (13)C9—C8—C13119.77 (15)
O3—N2—O4124.83 (17)C9—C8—C7121.94 (14)
O3—N2—C4117.50 (17)C13—C8—C7118.19 (14)
O4—N2—C4117.66 (16)C10—C9—C8119.65 (15)
O5—N3—O6123.63 (13)C10—C9—H9120.2
O5—N3—C6117.16 (13)C8—C9—H9120.2
O6—N3—C6119.20 (13)C11—C10—C9121.23 (16)
O7—C1—C6122.69 (12)C11—C10—H10119.4
O7—C1—C2119.66 (13)C9—C10—H10119.4
C6—C1—C2117.35 (13)C10—C11—C12118.26 (16)
C3—C2—C1122.52 (14)C10—C11—C14120.74 (18)
C3—C2—N1117.06 (13)C12—C11—C14120.99 (18)
C1—C2—N1120.41 (13)C13—C12—C11121.48 (16)
C2—C3—C4117.26 (14)C13—C12—H12119.3
C2—C3—H3121.4C11—C12—H12119.3
C4—C3—H3121.4C12—C13—C8119.59 (16)
C5—C4—C3122.72 (15)C12—C13—H13120.2
C5—C4—N2118.18 (15)C8—C13—H13120.2
C3—C4—N2119.10 (15)C11—C14—H14A109.5
C4—C5—C6118.54 (15)C11—C14—H14B109.5
C4—C5—H5120.7H14A—C14—H14B109.5
C6—C5—H5120.7C11—C14—H14C109.5
C5—C6—C1121.51 (13)H14A—C14—H14C109.5
C5—C6—N3116.71 (13)H14B—C14—H14C109.5
C1—C6—N3121.76 (13)
C7—O7—C1—C687.32 (16)C2—C1—C6—C50.5 (2)
C7—O7—C1—C299.17 (15)O7—C1—C6—N34.2 (2)
O7—C1—C2—C3171.34 (12)C2—C1—C6—N3177.83 (12)
C6—C1—C2—C32.5 (2)O5—N3—C6—C56.7 (2)
O7—C1—C2—N19.53 (19)O6—N3—C6—C5173.77 (13)
C6—C1—C2—N1176.61 (12)O5—N3—C6—C1171.70 (14)
O1—N1—C2—C3148.89 (16)O6—N3—C6—C17.9 (2)
O2—N1—C2—C329.57 (19)C1—O7—C7—O82.8 (2)
O1—N1—C2—C130.3 (2)C1—O7—C7—C8176.87 (12)
O2—N1—C2—C1151.26 (14)O8—C7—C8—C9151.99 (17)
C1—C2—C3—C43.3 (2)O7—C7—C8—C927.6 (2)
N1—C2—C3—C4175.80 (13)O8—C7—C8—C1324.5 (2)
C2—C3—C4—C51.3 (2)O7—C7—C8—C13155.96 (14)
C2—C3—C4—N2178.25 (13)C13—C8—C9—C100.9 (3)
O3—N2—C4—C5165.82 (18)C7—C8—C9—C10175.47 (16)
O4—N2—C4—C513.5 (3)C8—C9—C10—C111.1 (3)
O3—N2—C4—C314.6 (3)C9—C10—C11—C120.0 (3)
O4—N2—C4—C3166.10 (18)C9—C10—C11—C14179.2 (2)
C3—C4—C5—C61.5 (2)C10—C11—C12—C131.2 (3)
N2—C4—C5—C6178.95 (14)C14—C11—C12—C13178.0 (2)
C4—C5—C6—C12.4 (2)C11—C12—C13—C81.3 (3)
C4—C5—C6—N3175.99 (13)C9—C8—C13—C120.2 (3)
O7—C1—C6—C5174.10 (13)C7—C8—C13—C12176.76 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O8i0.932.503.4286 (19)175
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H9N3O8
Mr347.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.6126 (2), 8.2124 (2), 23.9893 (7)
β (°) 94.448 (1)
V3)1495.24 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.27 × 0.22 × 0.18
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5494, 3044, 2296
Rint0.017
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.02
No. of reflections3044
No. of parameters227
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.24

Computer programs: COLLECT (Nonius, 2000), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O8i0.932.503.4286 (19)174.5
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database. RMF also thanks the Universidad del Valle, Colombia, for partial financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBertolasi, V., Gilli, P. & Gilli, G. (2011). Cryst. Growth Des. 11, 2724–2735.  Web of Science CSD CrossRef CAS Google Scholar
First citationBibi, U., Siddiqi, H. M., Bolte, M. & Akhter, Z. (2009). Acta Cryst. E65, o3038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2005). Acta Cryst. B61, 227–237.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKhan, I. M., Ahmad, A. & Oves, M. (2010). Spectrochim. Acta Part A, 77, 1059–1064.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Mosquera, F., Ellena, J. & Tenorio, J. C. (2012). Acta Cryst. E68, o2187.  CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibakami, M. & Sekiya, A. (1995). Acta Cryst. C51, 326–330.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShibakami, M., Tamura, M., Arimura, T., Kurosawa, S. & Sekiya, A. (1994). Acta Cryst. C50, 592–594.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961–967.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds