metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1325-m1326

2-Amino­pyridinium trans-di­aqua­bis­­(oxalato-κ2O,O)chromate(III)

aDepartment of Inorganic Chemistry, University of Yaounde I, POB 812 Yaounde, Cameroon, bHigher Teacher Training College, POB 47, University of Yaounde 1, Cameroon, and cInstitut für Anorganische Chemie, RWTH Aachen, D-52056 Aachen, Germany
*Correspondence e-mail: jnenwa@yahoo.fr

(Received 14 September 2012; accepted 28 September 2012; online 6 October 2012)

In the title hybrid salt, (C5H7N2)[Cr(H2O)2(C2O4)2], the CrIII ion is coordinated in a slightly distorted octa­hedral environment by four O atoms from two oxalate ligands in the equatorial plane and by two water O atoms in the axial sites. The 2-amino­pyridinium cation is disordered over two sets of sites in a 0.800 (7):0.200 (7) ratio. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds connect the components into a three-dimensional network. The crystal studied was an inversion twin with components in a ratio 0.75 (2):0.25 (2).

Related literature

For general background to the coordination chemistry of oxalates, see: Martin et al. (2007[Martin, L., Day, P., Clegg, W., Harrington, R. W., Horton, P. N., Bingham, A., Hursthouse, M. B., McMillan, P. & Firth, S. (2007). J. Mater. Chem. 17, 3324-3329.]). For the structural characterization of organic–inorganic salts containing the [Cr(H2O)2(C2O4)2] anion, see: Bélombé et al. (2009[Bélombé, M. M., Nenwa, J. & Emmerling, F. (2009). Z. Kristallogr. New Cryst. Struct. 224, 239-240.]); Nenwa et al. (2010[Nenwa, J., Belombe, M. M., Ngoune, J. & Fokwa, B. P. T. (2010). Acta Cryst. E66, m1410.]); Chérif et al. (2011[Chérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2011). Acta Cryst. E67, m1648-m1649.]); Chérif, Abdelhak et al. (2012[Chérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2012). Acta Cryst. E68, m824-m825.]); Chérif, Zid et al. (2012[Chérif, I., Zid, M. F., El-Ghozzi, M. & Avignant, D. (2012). Acta Cryst. E68, m900-m901.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H7N2)[Cr(H2O)2(C2O4)2]

  • Mr = 359.20

  • Monoclinic, I a

  • a = 6.8627 (14) Å

  • b = 19.434 (4) Å

  • c = 9.854 (2) Å

  • β = 99.90 (3)°

  • V = 1294.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 100 K

  • 0.23 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.811, Tmax = 0.912

  • 9645 measured reflections

  • 3716 independent reflections

  • 3391 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.088

  • S = 1.04

  • 3716 reflections

  • 241 parameters

  • 21 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1793 Friedel pairs

  • Flack parameter: 0.25 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW1—HW1A⋯O23i 0.82 (2) 1.86 (2) 2.660 (4) 166 (3)
OW1—HW1B⋯O11ii 0.80 (2) 1.92 (2) 2.663 (3) 156 (4)
OW2—HW2A⋯O24iii 0.85 (2) 1.78 (2) 2.621 (4) 172 (4)
OW2—HW2B⋯O12iv 0.80 (2) 1.95 (2) 2.687 (3) 153 (4)
N1—H1A⋯O12v 0.88 2.33 3.183 (5) 164
N1—H1B⋯O23 0.88 2.38 3.251 (4) 171
N2—H2⋯O13v 0.88 2.02 2.865 (3) 159
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+1, z]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+1, z]; (v) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX Farrugia (1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The coordination chemistry of oxalates (C2O42-) continues to receive considerable attention, largely due to the ability of this ion to act as a remarkably flexible ligand system in complexations with a wide range of metal ions (Martin et al., 2007). In the course of recent years, a few organic–inorganic hybrid salts of the form A[Cr(H2O)2(C2O4)2].xH2O (A+ = aromatic iminium cation, 0 x 1) have been reported (Bélombé et al., 2009; Nenwa et al., 2010; Chérif et al., 2011; Chérif, Abdelhak et al., 2012; Chérif, Zid et al., 2012). These salts form crystal structures for which a set of interesting solid state properties, magnetic interactions, optical and/or optoelectronic effects, or combinations thereof may be expected. With the pyridinium core cation for instance, the resulting salts diversely crystallize in non-centrosymmetric space groups Fdd2 and Pna21 (Chérif, Abdelhak et al., 2012, 2011), or in the centrosymmetric space groups P21/c (Chérif, Zid et al., 2012) and C2/c (Nenwa et al., 2010), depending on the nature of the subtituent and/or the position of substitution. In the present contribution, we report the structure of a homologous salt in the non-centrosymmetric I2/a space group.

The asymmetric unit of the title compound is shown in Fig. 1. The main geometrical features of the [C5H7N2]+ cation are in agreement with those found in salts with similar cationic entities (Bélombé et al., 2009; Nenwa et al., 2010; Chérif et al., 2011; Chérif, Abdelhak et al., 2012; Chérif, Zid et al., 2012). The CrIII ion adopts a slightly distorted octahedral coordination environment involving four oxalate O atoms (O13, O14, O21, O23) in equatorial sites and two water O atoms (OW1, OW2) in axial sites. The equatorial Cr—O distances are shorter than the axial Cr—O distances. The bond distances in the complex anion (Table 1) are comparable with those reported for the 4-dimethylaminopyridinium compound (Nenwa et al., 2010).

In the crystal structure, intermolecular N—H···O (carbonyl) and O—H···O hydrogen bonds (Table 2, Fig. 2) connect the components into a three-dimensional network.

Related literature top

For general background to the coordination chemistry of oxalates, see: Martin et al. (2007). For the structural characterization of organic–inorganic salts containing the [Cr(H2O)2(C2O4)2]- anion, see: Bélombé et al. (2009); Nenwa et al. (2010); Chérif et al. (2011); Chérif, Abdelhak et al. (2012); Chérif, Zid et al. (2012).

Experimental top

A mixture of 2-aminopyridine (1 mmol, 100 mg) and oxalic acid (2 mmol, 260 mg) was dissolved in 30 ml of ethanol. An aqueous solution (20 ml) of CrCl3.6H2O (1 mmol, 266.5 mg) was added in successive small portions and stirred for 4 h continuously. The final blue–violet solution obtained was left at room temperature and crystals suitable for X-ray diffraction were obtained after a few days.

Refinement top

The H atoms were positioned geometrically, with C—H, N—H distances of 0.95 and 0.86 Å respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N). The water H atoms were initially located in a difference Fourier map and refined with distance restraints of d(O—H1) = 0.83 (2) with all Uiso(H) values restained to have the same value.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: WinGX Farrugia (1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn drawn at the 50% probability level. The minor component of disorder in the cation is not shown.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing the components linked via N—H···O and O—H···O hydrogen bonds (dashed lines) forming a three-dimensional network. The disorder is not shown.
2-Aminopyridinium trans-diaquabis(oxalato-κ2O,O)chromate(III) top
Crystal data top
(C5H7N2)[Cr(H2O)2(C2O4)2]F(000) = 732
Mr = 359.20Dx = 1.843 Mg m3
Monoclinic, IaMo Kα radiation, λ = 0.71073 Å
Hall symbol: I -2yaCell parameters from 3716 reflections
a = 6.8627 (14) Åθ = 2.4–30.7°
b = 19.434 (4) ŵ = 0.94 mm1
c = 9.854 (2) ÅT = 100 K
β = 99.90 (3)°Prism, blue
V = 1294.7 (5) Å30.23 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3716 independent reflections
Radiation source: fine-focus sealed tube3391 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 30.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.811, Tmax = 0.912k = 2726
9645 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0372P)2 + 2.2822P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3716 reflectionsΔρmax = 0.52 e Å3
241 parametersΔρmin = 0.30 e Å3
21 restraintsAbsolute structure: Flack (1983), 1793 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.25 (2)
Crystal data top
(C5H7N2)[Cr(H2O)2(C2O4)2]V = 1294.7 (5) Å3
Mr = 359.20Z = 4
Monoclinic, IaMo Kα radiation
a = 6.8627 (14) ŵ = 0.94 mm1
b = 19.434 (4) ÅT = 100 K
c = 9.854 (2) Å0.23 × 0.15 × 0.10 mm
β = 99.90 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3716 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3391 reflections with I > 2σ(I)
Tmin = 0.811, Tmax = 0.912Rint = 0.035
9645 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088Δρmax = 0.52 e Å3
S = 1.04Δρmin = 0.30 e Å3
3716 reflectionsAbsolute structure: Flack (1983), 1793 Friedel pairs
241 parametersAbsolute structure parameter: 0.25 (2)
21 restraints
Special details top

Experimental. A mixture of 2-aminopyridine (1 mmol, 100 mg) and oxalic acid (2 mmol, 260 mg) was dissolved in 30 ml of ethanol. An aqueous solution (20 ml) of CrCl3.6H2O (1 mmol, 266.5 mg) was added in successive small portions and stirred for 4 h continuously. The final blue-violet solution obtained was left at room temperature and crystals suitable for X-ray diffraction were obtained after a few days.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr10.19814 (16)0.342519 (16)0.68436 (13)0.01109 (9)
C110.2455 (5)0.48129 (16)0.7396 (4)0.0177 (7)
C120.1032 (5)0.47555 (17)0.6004 (3)0.0195 (7)
O110.2936 (4)0.53790 (12)0.7885 (3)0.0321 (6)
O120.0359 (4)0.52679 (12)0.5348 (3)0.0282 (6)
O140.3031 (4)0.42294 (13)0.7934 (3)0.0183 (5)
O130.0649 (4)0.41336 (12)0.5602 (3)0.0180 (5)
C210.2715 (5)0.20807 (17)0.7621 (3)0.0135 (6)
C220.1519 (5)0.20649 (17)0.6142 (4)0.0145 (6)
O220.0979 (3)0.26575 (12)0.5654 (2)0.0155 (5)
O210.3152 (3)0.26885 (12)0.8085 (2)0.0134 (5)
O240.3136 (5)0.15470 (11)0.8242 (3)0.0221 (7)
O230.1161 (5)0.15033 (11)0.5525 (3)0.0201 (6)
OW10.0319 (4)0.33987 (10)0.7854 (3)0.0145 (5)
OW20.4360 (4)0.34394 (10)0.5912 (3)0.0180 (5)
N10.2574 (5)0.01644 (13)0.7419 (4)0.0213 (9)0.800 (7)
H1A0.32240.02710.82410.026*0.800 (7)
H1B0.21000.04920.68390.026*0.800 (7)
N20.3078 (5)0.09776 (18)0.7994 (3)0.0141 (8)0.800 (7)
H20.37330.08400.87940.017*0.800 (7)
C10.2309 (6)0.04927 (14)0.7051 (4)0.0134 (8)0.800 (7)
C60.1323 (6)0.0728 (2)0.5772 (4)0.0150 (8)0.800 (7)
H60.07790.04090.50800.018*0.800 (7)
C50.1146 (6)0.1417 (2)0.5524 (4)0.0180 (9)0.800 (7)
H50.04940.15740.46500.022*0.800 (7)
C40.1916 (6)0.19022 (15)0.6546 (4)0.0161 (9)0.800 (7)
H40.17560.23820.63830.019*0.800 (7)
C30.2877 (6)0.1664 (2)0.7750 (4)0.0152 (9)0.800 (7)
H30.34290.19800.84470.018*0.800 (7)
N1A0.161 (2)0.0179 (4)0.6157 (15)0.031 (4)*0.200 (7)
H1A10.20890.04790.67960.037*0.200 (7)
H1A20.09950.03230.53480.037*0.200 (7)
N2A0.275 (2)0.0690 (6)0.7682 (10)0.021 (3)*0.200 (7)
H2A10.32110.03700.82850.025*0.200 (7)
C1A0.180 (2)0.0492 (4)0.6414 (12)0.011 (3)*0.200 (7)
C6A0.101 (2)0.1015 (6)0.5499 (9)0.007 (3)*0.200 (7)
H6A0.02920.09000.46170.009*0.200 (7)
C5A0.129 (3)0.1687 (5)0.5876 (14)0.024 (5)*0.200 (7)
H5A0.08160.20390.52340.028*0.200 (7)
C4A0.227 (2)0.1868 (5)0.7210 (16)0.020 (4)*0.200 (7)
H4A0.23770.23350.74980.024*0.200 (7)
C3A0.303 (2)0.1361 (7)0.8054 (11)0.018 (4)*0.200 (7)
H3A0.37750.14710.89300.022*0.200 (7)
HW1A0.016 (6)0.3359 (17)0.867 (2)0.028*
HW1B0.099 (5)0.3728 (13)0.764 (4)0.028*
HW2A0.406 (6)0.3418 (16)0.5044 (19)0.028*
HW2B0.485 (5)0.3815 (12)0.600 (4)0.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.01435 (16)0.00763 (14)0.01064 (15)0.0002 (2)0.00028 (11)0.0000 (2)
C110.0265 (17)0.0098 (12)0.0212 (14)0.0049 (11)0.0168 (13)0.0041 (10)
C120.0276 (17)0.0154 (15)0.0190 (15)0.0026 (12)0.0138 (13)0.0021 (12)
O110.0492 (16)0.0181 (11)0.0355 (14)0.0159 (10)0.0257 (12)0.0135 (10)
O120.0499 (15)0.0123 (10)0.0273 (12)0.0118 (10)0.0205 (11)0.0068 (9)
O140.0220 (11)0.0174 (12)0.0157 (10)0.0056 (9)0.0036 (9)0.0046 (9)
O130.0271 (13)0.0100 (11)0.0181 (11)0.0048 (8)0.0071 (10)0.0029 (8)
C210.0142 (13)0.0143 (15)0.0134 (13)0.0026 (11)0.0067 (10)0.0014 (11)
C220.0155 (14)0.0128 (14)0.0167 (14)0.0029 (11)0.0068 (11)0.0014 (11)
O220.0213 (12)0.0118 (12)0.0133 (10)0.0012 (8)0.0029 (9)0.0013 (8)
O210.0150 (10)0.0115 (11)0.0126 (10)0.0021 (8)0.0008 (8)0.0015 (8)
O240.0332 (15)0.0117 (12)0.0247 (14)0.0056 (9)0.0147 (11)0.0070 (8)
O230.0277 (13)0.0115 (11)0.0239 (13)0.0059 (9)0.0121 (10)0.0076 (8)
OW10.0145 (12)0.0110 (11)0.0185 (12)0.0034 (7)0.0047 (10)0.0008 (7)
OW20.0208 (14)0.0133 (12)0.0198 (12)0.0025 (7)0.0031 (10)0.0011 (7)
N10.0254 (17)0.0137 (14)0.0246 (16)0.0009 (11)0.0033 (13)0.0023 (11)
N20.0150 (15)0.0179 (19)0.0084 (13)0.0007 (12)0.0013 (11)0.0031 (12)
C10.016 (2)0.0140 (14)0.011 (2)0.0005 (12)0.0032 (15)0.0028 (12)
C60.0124 (17)0.020 (2)0.0107 (16)0.0040 (14)0.0026 (13)0.0003 (15)
C50.0127 (17)0.024 (2)0.0158 (18)0.0029 (16)0.0016 (13)0.0073 (16)
C40.0159 (18)0.0116 (14)0.020 (2)0.0013 (14)0.0019 (19)0.0036 (12)
C30.0151 (18)0.0116 (17)0.0193 (19)0.0014 (14)0.0039 (14)0.0011 (14)
Geometric parameters (Å, º) top
Cr1—O221.949 (2)N2—C11.364 (4)
Cr1—O131.960 (2)N2—H20.8800
Cr1—O141.962 (2)C1—C61.402 (5)
Cr1—O211.963 (2)C6—C51.363 (5)
Cr1—OW22.006 (3)C6—H60.9500
Cr1—OW12.007 (3)C5—C41.414 (5)
C11—O111.223 (4)C5—H50.9500
C11—O141.285 (4)C4—C31.337 (5)
C11—C121.545 (4)C4—H40.9500
C12—O121.233 (4)C3—H30.9500
C12—O131.285 (4)N1A—C1A1.331 (4)
C21—O241.214 (4)N1A—H1A10.8800
C21—O211.283 (4)N1A—H1A20.8800
C21—C221.545 (3)N2A—C3A1.359 (5)
C22—O231.253 (4)N2A—C1A1.363 (5)
C22—O221.278 (4)N2A—H2A10.8800
OW1—HW1A0.816 (18)C1A—C6A1.402 (5)
OW1—HW1B0.796 (18)C6A—C5A1.363 (5)
OW2—HW2A0.846 (18)C6A—H6A0.9500
OW2—HW2B0.803 (18)C5A—C4A1.414 (6)
N1—C11.331 (3)C5A—H5A0.9500
N1—H1A0.8800C4A—C3A1.337 (6)
N1—H1B0.8800C4A—H4A0.9500
N2—C31.358 (4)C3A—H3A0.9500
O22—Cr1—O1394.80 (11)C3—N2—C1122.9 (3)
O22—Cr1—O14176.23 (12)C3—N2—H2118.6
O13—Cr1—O1482.55 (9)C1—N2—H2118.6
O22—Cr1—O2183.15 (7)N1—C1—N2117.3 (4)
O13—Cr1—O21176.38 (11)N1—C1—C6125.5 (4)
O14—Cr1—O2199.63 (11)N2—C1—C6117.2 (3)
O22—Cr1—OW288.05 (9)C5—C6—C1119.8 (3)
O13—Cr1—OW291.94 (10)C5—C6—H6120.1
O14—Cr1—OW289.36 (10)C1—C6—H6120.1
O21—Cr1—OW290.98 (10)C6—C5—C4121.1 (3)
O22—Cr1—OW193.02 (9)C6—C5—H5119.5
O13—Cr1—OW190.31 (10)C4—C5—H5119.5
O14—Cr1—OW189.68 (10)C3—C4—C5117.9 (3)
O21—Cr1—OW186.82 (9)C3—C4—H4121.0
OW2—Cr1—OW1177.42 (14)C5—C4—H4121.0
O11—C11—O14126.0 (4)C4—C3—N2121.1 (3)
O11—C11—C12120.1 (3)C4—C3—H3119.4
O14—C11—C12113.9 (3)N2—C3—H3119.4
O12—C12—O13124.1 (3)C1A—N1A—H1A1120.0
O12—C12—C11122.0 (3)C1A—N1A—H1A2120.0
O13—C12—C11114.0 (3)H1A1—N1A—H1A2120.0
C11—O14—Cr1114.8 (2)C3A—N2A—C1A122.7 (4)
C12—O13—Cr1114.8 (2)C3A—N2A—H2A1118.6
O24—C21—O21125.9 (3)C1A—N2A—H2A1118.6
O24—C21—C22120.0 (4)N1A—C1A—N2A117.8 (5)
O21—C21—C22114.1 (3)N1A—C1A—C6A125.0 (5)
O23—C22—O22125.6 (4)N2A—C1A—C6A117.1 (3)
O23—C22—C21120.2 (4)C5A—C6A—C1A120.0 (4)
O22—C22—C21114.2 (3)C5A—C6A—H6A120.0
C22—O22—Cr1114.4 (2)C1A—C6A—H6A120.0
C21—O21—Cr1113.8 (2)C6A—C5A—C4A120.9 (4)
Cr1—OW1—HW1A106 (3)C6A—C5A—H5A119.6
Cr1—OW1—HW1B108 (3)C4A—C5A—H5A119.6
HW1A—OW1—HW1B117 (3)C3A—C4A—C5A117.8 (4)
Cr1—OW2—HW2A113 (3)C3A—C4A—H4A121.1
Cr1—OW2—HW2B109 (3)C5A—C4A—H4A121.1
HW2A—OW2—HW2B100 (3)C4A—C3A—N2A121.3 (4)
C1—N1—H1A120.0C4A—C3A—H3A119.4
C1—N1—H1B120.0N2A—C3A—H3A119.4
H1A—N1—H1B120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HW1A···O23i0.82 (2)1.86 (2)2.660 (4)166 (3)
OW1—HW1B···O11ii0.80 (2)1.92 (2)2.663 (3)156 (4)
OW2—HW2A···O24iii0.85 (2)1.78 (2)2.621 (4)172 (4)
OW2—HW2B···O12iv0.80 (2)1.95 (2)2.687 (3)153 (4)
N1—H1A···O12v0.882.333.183 (5)164
N1—H1B···O230.882.383.251 (4)171
N2—H2···O13v0.882.022.865 (3)159
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1/2, y+1, z; (iii) x, y+1/2, z1/2; (iv) x+1/2, y+1, z; (v) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C5H7N2)[Cr(H2O)2(C2O4)2]
Mr359.20
Crystal system, space groupMonoclinic, Ia
Temperature (K)100
a, b, c (Å)6.8627 (14), 19.434 (4), 9.854 (2)
β (°) 99.90 (3)
V3)1294.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.23 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.811, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
9645, 3716, 3391
Rint0.035
(sin θ/λ)max1)0.717
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.088, 1.04
No. of reflections3716
No. of parameters241
No. of restraints21
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.30
Absolute structureFlack (1983), 1793 Friedel pairs
Absolute structure parameter0.25 (2)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010), WinGX Farrugia (1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HW1A···O23i0.816 (18)1.86 (2)2.660 (4)166 (3)
OW1—HW1B···O11ii0.796 (18)1.92 (2)2.663 (3)156 (4)
OW2—HW2A···O24iii0.846 (18)1.782 (19)2.621 (4)172 (4)
OW2—HW2B···O12iv0.803 (18)1.95 (2)2.687 (3)153 (4)
N1—H1A···O12v0.882.333.183 (5)164.4
N1—H1B···O230.882.383.251 (4)170.5
N2—H2···O13v0.882.022.865 (3)159.3
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1/2, y+1, z; (iii) x, y+1/2, z1/2; (iv) x+1/2, y+1, z; (v) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank Professor Barthelemy Nyasse (Organic Chemistry Department, University of Yaounde I) for the donation of 2-amino­pyridin and Tobias Storp (RWTH Aachen) for his technical support during the X-ray experiments.

References

First citationBélombé, M. M., Nenwa, J. & Emmerling, F. (2009). Z. Kristallogr. New Cryst. Struct. 224, 239–240.  Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2011). Acta Cryst. E67, m1648–m1649.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2012). Acta Cryst. E68, m824–m825.  CSD CrossRef IUCr Journals Google Scholar
First citationChérif, I., Zid, M. F., El-Ghozzi, M. & Avignant, D. (2012). Acta Cryst. E68, m900–m901.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMartin, L., Day, P., Clegg, W., Harrington, R. W., Horton, P. N., Bingham, A., Hursthouse, M. B., McMillan, P. & Firth, S. (2007). J. Mater. Chem. 17, 3324–3329.  Web of Science CSD CrossRef CAS Google Scholar
First citationNenwa, J., Belombe, M. M., Ngoune, J. & Fokwa, B. P. T. (2010). Acta Cryst. E66, m1410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1325-m1326
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds