organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-chloro­benzo­yl)-N-(2-chloro­phen­yl)-O-[2-(2-nitro­phen­yl)acet­yl]hydroxyl­amine

aInstitute of Medicinal Chemistry, School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu Province, People's Republic of China, and bGansu College of Traditional Chinese Medicine, Lanzhou 730000, Gansu Province, People's Republic of China
*Correspondence e-mail: majing.1988.ok@163.com

(Received 20 September 2012; accepted 28 September 2012; online 3 October 2012)

In the title hydroxamic acid derivate, C21H14N2O5Cl2, the nitro-substituted benzene ring forms dihedral angles of 66.0 (2) and 59.6 (2)°, with the p-chloro and o-chloro-substituted benzene rings, respectively. The dihedral angle between the two chloro-substituted benzene rings is 64.2 (2) Å. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules along [010]. The crystal studied was an inversion twin with refined components in the ratio 0.60 (7):0.40 (7).

Related literature

For applications of hydroxamic acid derivatives, see: Noh et al. (2009[Noh, E. J., Lim, D. S., Jeong, G. & Lee, J. S. (2009). Biochem. Biophys. Res. Commun. 378, 326-331.]); Zeng et al. (2003[Zeng, W., Zeng, G. Y. & Qin, S. Y. (2003). Chin. J. Org. Chem. 23, 1213-1218.]). For the synthesis, see: Ayyangark et al. (1986[Ayyangark, N. R., Hrailme, C., Kalkotf, U. R. & Srinivasan, K. V. (1986). Synth. Commun. pp. 938-941.]). For a related structure, see: Zhang et al. (2012[Zhang, H., Qu, D. & Ma, J. (2012). Acta Cryst. E68, o2904.]).

[Scheme 1]

Experimental

Crystal data
  • C21H14Cl2N2O5

  • Mr = 445.24

  • Monoclinic, P 21

  • a = 12.366 (14) Å

  • b = 6.789 (8) Å

  • c = 12.579 (14) Å

  • β = 105.150 (14)°

  • V = 1019 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 296 K

  • 0.21 × 0.20 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.]) Tmin = 0.929, Tmax = 0.945

  • 5091 measured reflections

  • 3669 independent reflections

  • 1821 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.069

  • S = 0.99

  • 3669 reflections

  • 271 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1624 Friedel pairs

  • Flack parameter: 0.40 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.38 3.264 (7) 158
C15—H15B⋯O1ii 0.97 2.45 3.421 (6) 175
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+1]; (ii) [-x, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydroxamic acid derivatives have received considerable attention in recent years as the result of the discovery of their role in the biochemical toxicology of many drugs and other chemicals (Noh et al., 2009; Zeng et al., 2003). The molecular structure of the title compound is sjown in Fig. 1. The nitro-substituted benzene ring (C16-C24) forms dihedral angles of 66.0 (2) and 59.6 (2)°, with the 4-chloro (C1-C6) and 2-chloro-substituted (C8-C13) benzene rings, respectively. The dihedral angle between the two chloro-substituted benzene rings (C1-6/C8-C13) is 64.2 (2)Å. In the crystal, weak C—H···O hydrogen bonds linke molecules along [010] (Fig .2). The bond legths and angles can be compared to those in N-(2-Chlorophenyl)-1-phenylformamido 3-(2-nitrophenyl)propanoate (Zhang et al., 2012).

Related literature top

For applications of hydroxamic acid derivatives, see: Noh et al. (2009); Zeng et al. (2003). For the synthesis, see: Ayyangark et al. (1986). For a related structure, see: Zhang et al. (2012).

Experimental top

The title compound (I) was prepared according to the method described by Ayyangark et al. (1986). Crystals suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution of (I) in dichloromethane-methanol (1:3 v/v).

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.93 and 0.97Å and included in a riding-model approximation with Uiso = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure with weak hydrogen bonds shown as dashed lines.
N-(4-chlorobenzoyl)-N-(2-chlorophenyl)-O-[2-(2- nitrophenyl)acetyl]hydroxylamine top
Crystal data top
C21H14Cl2N2O5F(000) = 456
Mr = 445.24Dx = 1.450 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 985 reflections
a = 12.366 (14) Åθ = 2.7–19.2°
b = 6.789 (8) ŵ = 0.36 mm1
c = 12.579 (14) ÅT = 296 K
β = 105.150 (14)°Block, colorless
V = 1019 (2) Å30.21 × 0.20 × 0.16 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3669 independent reflections
Radiation source: fine-focus sealed tube1821 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.929, Tmax = 0.945k = 88
5091 measured reflectionsl = 1514
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0117P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.054(Δ/σ)max < 0.001
wR(F2) = 0.069Δρmax = 0.17 e Å3
S = 0.99Δρmin = 0.16 e Å3
3669 reflectionsAbsolute structure: Flack (1983), 1624 Friedel pairs
271 parametersAbsolute structure parameter: 0.40 (7)
1 restraint
Crystal data top
C21H14Cl2N2O5V = 1019 (2) Å3
Mr = 445.24Z = 2
Monoclinic, P21Mo Kα radiation
a = 12.366 (14) ŵ = 0.36 mm1
b = 6.789 (8) ÅT = 296 K
c = 12.579 (14) Å0.21 × 0.20 × 0.16 mm
β = 105.150 (14)°
Data collection top
Bruker APEXII CCD
diffractometer
3669 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1821 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.945Rint = 0.030
5091 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.069Δρmax = 0.17 e Å3
S = 0.99Δρmin = 0.16 e Å3
3669 reflectionsAbsolute structure: Flack (1983), 1624 Friedel pairs
271 parametersAbsolute structure parameter: 0.40 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0147 (3)0.5015 (8)0.8371 (3)0.0556 (12)
H10.04220.40070.88690.067*
C20.0321 (4)0.6675 (7)0.8709 (3)0.0590 (13)
H20.03630.67860.94340.071*
C30.0720 (4)0.8152 (6)0.7973 (4)0.0581 (14)
C40.0663 (4)0.8041 (7)0.6904 (4)0.0642 (15)
H40.09350.90610.64140.077*
C50.0194 (4)0.6382 (7)0.6562 (4)0.0554 (13)
H50.01480.62920.58380.067*
C60.0207 (3)0.4855 (7)0.7292 (3)0.0439 (11)
C70.0602 (4)0.3045 (7)0.6835 (4)0.0493 (13)
C80.2401 (3)0.3019 (7)0.8323 (4)0.0487 (12)
C90.2722 (4)0.2095 (7)0.9344 (4)0.0577 (13)
C100.3508 (4)0.2985 (10)1.0199 (5)0.0814 (17)
H100.37200.23761.08840.098*
C110.3970 (4)0.4729 (11)1.0044 (5)0.0906 (19)
H110.44840.53281.06280.109*
C120.3684 (4)0.5626 (8)0.9024 (5)0.0831 (18)
H120.40260.68010.89150.100*
C130.2899 (4)0.4789 (8)0.8174 (4)0.0640 (14)
H130.26970.54110.74920.077*
C140.2324 (3)0.0798 (8)0.6138 (4)0.0493 (13)
C150.2469 (3)0.1148 (6)0.5610 (3)0.0523 (12)
H15A0.26880.21380.61820.063*
H15B0.17540.15430.51280.063*
C160.3330 (4)0.1087 (6)0.4954 (4)0.0494 (12)
C170.2956 (4)0.1148 (7)0.3812 (4)0.0669 (14)
H170.21900.12170.34850.080*
C180.3679 (5)0.1107 (8)0.3152 (4)0.0791 (16)
H180.34060.11160.23900.095*
C190.4823 (5)0.1054 (7)0.3634 (5)0.0778 (16)
H190.53200.10530.31910.093*
C200.5227 (4)0.1003 (7)0.4756 (5)0.0690 (14)
H200.59940.09660.50820.083*
C210.4474 (4)0.1006 (6)0.5391 (4)0.0511 (12)
Cl10.13093 (10)1.0228 (2)0.84135 (10)0.0924 (4)
Cl20.21125 (11)0.0100 (2)0.95615 (10)0.0868 (4)
N10.1548 (3)0.2169 (6)0.7465 (3)0.0501 (9)
N20.4985 (4)0.0959 (6)0.6589 (4)0.0711 (13)
O10.0103 (2)0.2380 (4)0.5951 (2)0.0622 (9)
O20.1866 (2)0.0409 (4)0.7008 (2)0.0563 (8)
O30.4389 (3)0.0664 (6)0.7204 (3)0.0983 (14)
O40.5971 (3)0.1181 (7)0.6925 (3)0.1191 (16)
O50.2537 (2)0.2392 (5)0.5864 (2)0.0613 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.062 (3)0.066 (3)0.040 (3)0.008 (3)0.015 (2)0.012 (3)
C20.068 (3)0.077 (4)0.035 (3)0.006 (3)0.017 (3)0.005 (3)
C30.053 (3)0.053 (3)0.062 (4)0.007 (3)0.005 (3)0.006 (3)
C40.068 (4)0.065 (4)0.048 (4)0.012 (3)0.006 (3)0.005 (3)
C50.063 (4)0.070 (4)0.035 (3)0.020 (3)0.016 (3)0.002 (3)
C60.038 (3)0.058 (3)0.035 (3)0.005 (3)0.007 (2)0.007 (3)
C70.050 (3)0.068 (4)0.036 (3)0.006 (3)0.022 (3)0.003 (3)
C80.029 (3)0.071 (4)0.043 (3)0.003 (3)0.005 (3)0.008 (3)
C90.046 (3)0.065 (3)0.061 (3)0.011 (3)0.010 (3)0.001 (3)
C100.067 (4)0.103 (5)0.061 (4)0.024 (4)0.007 (3)0.005 (4)
C110.076 (4)0.108 (6)0.074 (4)0.011 (5)0.006 (3)0.012 (5)
C120.055 (4)0.083 (5)0.104 (5)0.008 (4)0.008 (3)0.004 (4)
C130.049 (3)0.082 (4)0.057 (3)0.009 (3)0.007 (3)0.012 (3)
C140.031 (3)0.076 (4)0.042 (3)0.004 (3)0.011 (2)0.000 (3)
C150.042 (3)0.059 (3)0.055 (3)0.001 (3)0.010 (2)0.006 (3)
C160.040 (3)0.042 (3)0.068 (4)0.007 (3)0.017 (3)0.004 (3)
C170.067 (4)0.082 (3)0.051 (3)0.009 (3)0.013 (3)0.011 (3)
C180.101 (5)0.082 (4)0.063 (4)0.014 (4)0.036 (4)0.003 (3)
C190.083 (5)0.055 (3)0.114 (5)0.009 (4)0.059 (4)0.005 (4)
C200.050 (3)0.050 (3)0.110 (5)0.003 (3)0.025 (3)0.012 (4)
C210.049 (3)0.038 (3)0.069 (4)0.001 (3)0.019 (3)0.000 (3)
Cl10.0909 (10)0.0798 (10)0.0966 (10)0.0165 (10)0.0068 (8)0.0179 (9)
Cl20.1014 (10)0.0849 (11)0.0788 (9)0.0064 (10)0.0320 (7)0.0200 (9)
N10.040 (2)0.065 (3)0.044 (2)0.003 (2)0.009 (2)0.006 (2)
N20.060 (4)0.059 (3)0.083 (4)0.002 (3)0.002 (3)0.004 (3)
O10.057 (2)0.088 (2)0.0363 (19)0.001 (2)0.0039 (16)0.0121 (18)
O20.0591 (19)0.060 (2)0.0549 (19)0.0036 (19)0.0230 (16)0.0048 (18)
O30.073 (3)0.146 (4)0.067 (3)0.002 (3)0.003 (2)0.003 (3)
O40.056 (2)0.155 (4)0.124 (3)0.012 (3)0.016 (2)0.003 (3)
O50.063 (2)0.062 (2)0.067 (2)0.006 (2)0.0312 (18)0.0019 (18)
Geometric parameters (Å, º) top
C1—C61.382 (5)C12—C131.366 (5)
C1—C21.384 (6)C12—H120.9300
C1—H10.9300C13—H130.9300
C2—C31.366 (6)C14—O51.186 (5)
C2—H20.9300C14—O21.384 (5)
C3—C41.367 (5)C14—C151.510 (6)
C3—Cl11.742 (5)C15—C161.509 (5)
C4—C51.386 (5)C15—H15A0.9700
C4—H40.9300C15—H15B0.9700
C5—C61.388 (5)C16—C211.379 (5)
C5—H50.9300C16—C171.390 (5)
C6—C71.492 (6)C17—C181.370 (6)
C7—O11.209 (5)C17—H170.9300
C7—N11.367 (5)C18—C191.386 (6)
C8—C131.385 (5)C18—H180.9300
C8—C91.391 (5)C19—C201.369 (6)
C8—N11.419 (5)C19—H190.9300
C9—C101.386 (6)C20—C211.378 (5)
C9—Cl21.724 (5)C20—H200.9300
C10—C111.351 (6)C21—N21.474 (6)
C10—H100.9300N1—O21.426 (4)
C11—C121.381 (6)N2—O41.191 (5)
C11—H110.9300N2—O31.216 (4)
C6—C1—C2120.0 (4)C12—C13—H13119.8
C6—C1—H1120.0C8—C13—H13119.8
C2—C1—H1120.0O5—C14—O2124.9 (5)
C3—C2—C1119.8 (4)O5—C14—C15127.6 (4)
C3—C2—H2120.1O2—C14—C15107.5 (4)
C1—C2—H2120.1C16—C15—C14113.5 (4)
C2—C3—C4121.5 (4)C16—C15—H15A108.9
C2—C3—Cl1119.1 (4)C14—C15—H15A108.9
C4—C3—Cl1119.4 (4)C16—C15—H15B108.9
C3—C4—C5118.9 (4)C14—C15—H15B108.9
C3—C4—H4120.5H15A—C15—H15B107.7
C5—C4—H4120.5C21—C16—C17116.3 (4)
C4—C5—C6120.5 (4)C21—C16—C15125.5 (4)
C4—C5—H5119.7C17—C16—C15118.3 (4)
C6—C5—H5119.7C18—C17—C16122.2 (5)
C1—C6—C5119.3 (5)C18—C17—H17118.9
C1—C6—C7123.4 (5)C16—C17—H17118.9
C5—C6—C7117.2 (4)C17—C18—C19119.3 (5)
O1—C7—N1121.7 (4)C17—C18—H18120.4
O1—C7—C6121.5 (4)C19—C18—H18120.4
N1—C7—C6116.8 (4)C20—C19—C18120.5 (5)
C13—C8—C9119.1 (4)C20—C19—H19119.8
C13—C8—N1121.2 (4)C18—C19—H19119.8
C9—C8—N1119.6 (5)C19—C20—C21118.6 (5)
C10—C9—C8119.5 (5)C19—C20—H20120.7
C10—C9—Cl2120.1 (5)C21—C20—H20120.7
C8—C9—Cl2120.4 (4)C20—C21—C16123.2 (5)
C11—C10—C9120.5 (6)C20—C21—N2114.8 (5)
C11—C10—H10119.7C16—C21—N2122.0 (4)
C9—C10—H10119.7C7—N1—C8128.2 (4)
C10—C11—C12120.3 (6)C7—N1—O2114.5 (3)
C10—C11—H11119.8C8—N1—O2114.8 (3)
C12—C11—H11119.8O4—N2—O3122.0 (5)
C13—C12—C11120.1 (6)O4—N2—C21119.0 (5)
C13—C12—H12120.0O3—N2—C21118.9 (4)
C11—C12—H12120.0C14—O2—N1111.9 (3)
C12—C13—C8120.4 (4)
C6—C1—C2—C30.1 (7)C14—C15—C16—C17107.7 (5)
C1—C2—C3—C40.5 (7)C21—C16—C17—C180.7 (7)
C1—C2—C3—Cl1179.9 (3)C15—C16—C17—C18179.7 (4)
C2—C3—C4—C50.4 (7)C16—C17—C18—C191.6 (8)
Cl1—C3—C4—C5180.0 (3)C17—C18—C19—C201.3 (8)
C3—C4—C5—C60.3 (7)C18—C19—C20—C210.0 (8)
C2—C1—C6—C50.7 (6)C19—C20—C21—C161.0 (7)
C2—C1—C6—C7174.2 (4)C19—C20—C21—N2179.7 (4)
C4—C5—C6—C10.8 (6)C17—C16—C21—C200.6 (7)
C4—C5—C6—C7174.4 (4)C15—C16—C21—C20178.3 (4)
C1—C6—C7—O1134.5 (4)C17—C16—C21—N2179.3 (4)
C5—C6—C7—O140.6 (6)C15—C16—C21—N20.3 (7)
C1—C6—C7—N145.1 (5)O1—C7—N1—C8159.2 (4)
C5—C6—C7—N1139.9 (4)C6—C7—N1—C821.3 (6)
C13—C8—C9—C101.7 (6)O1—C7—N1—O21.6 (5)
N1—C8—C9—C10176.3 (4)C6—C7—N1—O2177.9 (3)
C13—C8—C9—Cl2179.5 (3)C13—C8—N1—C749.9 (6)
N1—C8—C9—Cl21.5 (6)C9—C8—N1—C7128.1 (4)
C8—C9—C10—C110.5 (7)C13—C8—N1—O2110.9 (4)
Cl2—C9—C10—C11178.4 (4)C9—C8—N1—O271.2 (5)
C9—C10—C11—C121.5 (8)C20—C21—N2—O49.7 (7)
C10—C11—C12—C132.5 (8)C16—C21—N2—O4169.1 (5)
C11—C12—C13—C81.3 (7)C20—C21—N2—O3169.2 (4)
C9—C8—C13—C120.8 (6)C16—C21—N2—O312.1 (7)
N1—C8—C13—C12177.2 (4)O5—C14—O2—N17.0 (6)
O5—C14—C15—C1623.1 (6)C15—C14—O2—N1171.7 (3)
O2—C14—C15—C16158.2 (3)C7—N1—O2—C1474.1 (4)
C14—C15—C16—C2173.3 (6)C8—N1—O2—C1489.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.383.264 (7)158
C15—H15B···O1ii0.972.453.421 (6)175
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC21H14Cl2N2O5
Mr445.24
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)12.366 (14), 6.789 (8), 12.579 (14)
β (°) 105.150 (14)
V3)1019 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.21 × 0.20 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.929, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
5091, 3669, 1821
Rint0.030
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.069, 0.99
No. of reflections3669
No. of parameters271
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16
Absolute structureFlack (1983), 1624 Friedel pairs
Absolute structure parameter0.40 (7)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.383.264 (7)158
C15—H15B···O1ii0.972.453.421 (6)175
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y1/2, z+1.
 

Acknowledgements

This work was supported by the Natural Science Fund Projects of Gansu Province (0710RJZA124).

References

First citationAyyangark, N. R., Hrailme, C., Kalkotf, U. R. & Srinivasan, K. V. (1986). Synth. Commun. pp. 938–941.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNoh, E. J., Lim, D. S., Jeong, G. & Lee, J. S. (2009). Biochem. Biophys. Res. Commun. 378, 326–331.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, W., Zeng, G. Y. & Qin, S. Y. (2003). Chin. J. Org. Chem. 23, 1213–1218.  CAS Google Scholar
First citationZhang, H., Qu, D. & Ma, J. (2012). Acta Cryst. E68, o2904.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds