organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Di­benzyl-O,O′-di­methyl thio­phosphate

aFaculty of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran, bDepartment of Chemistry, Zanjan Branch, Islamic Azad University, Zanjan, Iran, cDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran, and dDepartment of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, Brno CZ-61137, Czech Republic
*Correspondence e-mail: a.raissi_shabari@yahoo.com

(Received 23 September 2012; accepted 1 October 2012; online 6 October 2012)

The P atom in the title compound, C16H20NO2PS, is bonded in a distorted tetra­hedral P(S)(O)2N environment with the bond angles at the P atom in the range 99.37 (7) to 115.68 (5)°. The angles at the amido N atom (with bond-angle sum of 357.8°) confirm its sp2 character. The C—O—P bond angles are 119.78 (11) and 119.39 (12)°.

Related literature

For a related phospho­ramido­thio­ate structure, see: Sabbaghi et al. (2012[Sabbaghi, F., Pourayoubi, M. & Nečas, M. (2012). Acta Cryst. E68, o2891.]). For structures with a P—N(CH2C6H5)2 fragment, see: Pourayoubi et al. (2012[Pourayoubi, M., Jasinski, J. P., Shoghpour Bayraq, S., Eshghi, H., Keeley, A. C., Bruno, G. & Amiri Rudbari, H. (2012). Acta Cryst. C68, o399-o404.]).

[Scheme 1]

Experimental

Crystal data
  • C16H20NO2PS

  • Mr = 321.36

  • Orthorhombic, P 21 21 21

  • a = 6.8377 (3) Å

  • b = 8.1115 (4) Å

  • c = 28.6187 (16) Å

  • V = 1587.31 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 120 K

  • 0.75 × 0.55 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.] Tmin = 0.802, Tmax = 0.927

  • 4397 measured reflections

  • 3010 independent reflections

  • 2747 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.064

  • S = 1.03

  • 3010 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 982 Friedel pairs

  • Flack parameter: −0.04 (7)

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The structure determination of the title compound (Fig. 1) was performed as a part of a project on the synthesis of a new phosphoramidothioate (Sabbaghi et al., 2012). The PS (1.9299 (6) Å), P—O (1.5796 (12) and 1.5961 (12) Å) and P—N (1.6343 (15) Å) bond lengths are within the expected values. The P atom has a distorted tetrahedral configuration (Fig. 1). The bond angles at the P atom vary in the range 99.37 (7) (O1—P1—O2) to 115.68 (5)° (O1—P1—S2). The nitrogen atom shows sp2 character with the average bond angle 119.3° with the C—N—C angle (114.98 (13) Å) contracted relative to the P—N—C angles (123.50 (11) and 119.30 (11) Å) similar to previously reported compounds with a P—N(CH2C6H5)2 fragment (Pourayoubi et al., 2012).

Related literature top

For a related phosphoramidothioate structure, see: Sabbaghi et al. (2012). For a structures with a P—N(CH2C6H5)2 fragment, see: Pourayoubi et al. (2012).

Experimental top

To a solution of dimethyl chlorothiophosphate, [CH3O]2P(S)Cl, (1.7 mmol) in dry CH3CN (30 ml), a solution of dibenzylamine (3.4 mmol) in the same solvent (5 ml) was added at ice bath temperature. After 4 h stirring, the solvent was removed and the product was washed with distilled water and recrystallized from methanol at room temperature. The single crystals, suitable for X-ray analysis were obtained from this solution after a few days at room temperature.

Refinement top

All carbon bound H atoms were placed in calculated positions and were refined as riding with their Uiso set to either 1.2Ueq or 1.5Ueq (methyl) of the respective carrier atoms; in addition, the methyl H atoms were allowed to rotate about the C—C bond.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids shown at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii.
(I) top
Crystal data top
C16H20NO2PSF(000) = 680
Mr = 321.36Dx = 1.345 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2953 reflections
a = 6.8377 (3) Åθ = 3.1–27.6°
b = 8.1115 (4) ŵ = 0.31 mm1
c = 28.6187 (16) ÅT = 120 K
V = 1587.31 (14) Å3Prism, colourless
Z = 40.75 × 0.55 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
3010 independent reflections
Radiation source: Enhance (Mo) X-ray Source2747 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 8.4353 pixels mm-1θmax = 27.7°, θmin = 3.1°
ω scanh = 48
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 710
Tmin = 0.802, Tmax = 0.927l = 1837
4397 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0379P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3010 reflectionsΔρmax = 0.25 e Å3
192 parametersΔρmin = 0.31 e Å3
0 restraintsAbsolute structure: Flack (1983), 982 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (7)
Crystal data top
C16H20NO2PSV = 1587.31 (14) Å3
Mr = 321.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.8377 (3) ŵ = 0.31 mm1
b = 8.1115 (4) ÅT = 120 K
c = 28.6187 (16) Å0.75 × 0.55 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
3010 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2747 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 0.927Rint = 0.014
4397 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.064Δρmax = 0.25 e Å3
S = 1.03Δρmin = 0.31 e Å3
3010 reflectionsAbsolute structure: Flack (1983), 982 Friedel pairs
192 parametersAbsolute structure parameter: 0.04 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1193 (3)0.0377 (2)0.26315 (7)0.0250 (4)
H1A0.13390.09390.23300.037*
H1B0.24880.00890.27540.037*
H1C0.04200.06290.25890.037*
C20.2073 (3)0.0532 (2)0.40718 (7)0.0259 (4)
H2A0.34660.06090.41490.039*
H2B0.13720.00060.43310.039*
H2C0.15450.16400.40200.039*
C30.0215 (2)0.3937 (2)0.37593 (6)0.0155 (4)
H3A0.14220.37140.35790.019*
H3B0.04730.48690.36080.019*
C40.3118 (2)0.2750 (2)0.38807 (6)0.0150 (4)
H4A0.37800.16720.39180.018*
H4B0.31440.33120.41880.018*
C50.0757 (2)0.4412 (2)0.42528 (6)0.0159 (4)
C60.0174 (3)0.5705 (2)0.44800 (6)0.0200 (4)
H60.11800.62970.43240.024*
C70.0350 (3)0.6145 (2)0.49342 (7)0.0251 (4)
H70.02970.70310.50860.030*
C80.1815 (3)0.5286 (2)0.51624 (7)0.0245 (4)
H80.21670.55750.54730.029*
C90.2761 (3)0.4010 (2)0.49388 (7)0.0245 (4)
H90.37730.34260.50950.029*
C100.2240 (3)0.3574 (2)0.44868 (6)0.0200 (4)
H100.29030.26950.43350.024*
C110.4258 (2)0.3774 (2)0.35330 (6)0.0157 (4)
C120.4820 (3)0.3088 (2)0.31086 (6)0.0189 (4)
H120.44680.19820.30390.023*
C130.5879 (3)0.3985 (2)0.27863 (6)0.0215 (4)
H130.62420.35000.24970.026*
C140.6414 (3)0.5599 (2)0.28866 (6)0.0211 (4)
H140.71580.62170.26680.025*
C150.5860 (3)0.6299 (2)0.33044 (7)0.0223 (4)
H150.62120.74060.33720.027*
C160.4789 (3)0.5395 (2)0.36273 (7)0.0191 (4)
H160.44160.58870.39150.023*
N10.1058 (2)0.24562 (18)0.37470 (5)0.0143 (3)
O10.02041 (18)0.14624 (14)0.29598 (4)0.0176 (3)
O20.18301 (17)0.04395 (15)0.36533 (4)0.0186 (3)
P10.03212 (6)0.08173 (5)0.346520 (16)0.01436 (11)
S20.20827 (7)0.10397 (5)0.348938 (16)0.02011 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0280 (10)0.0296 (10)0.0173 (10)0.0001 (9)0.0063 (9)0.0056 (8)
C20.0274 (10)0.0254 (10)0.0248 (10)0.0004 (9)0.0074 (9)0.0080 (8)
C30.0169 (8)0.0151 (8)0.0145 (9)0.0038 (8)0.0013 (7)0.0016 (7)
C40.0134 (8)0.0167 (8)0.0148 (9)0.0008 (7)0.0029 (8)0.0013 (7)
C50.0153 (8)0.0151 (9)0.0174 (9)0.0069 (7)0.0009 (7)0.0013 (7)
C60.0210 (9)0.0195 (9)0.0195 (10)0.0003 (8)0.0023 (8)0.0019 (8)
C70.0310 (10)0.0208 (9)0.0237 (10)0.0016 (9)0.0035 (9)0.0038 (8)
C80.0299 (10)0.0295 (10)0.0141 (9)0.0086 (9)0.0025 (9)0.0002 (8)
C90.0211 (9)0.0289 (10)0.0235 (10)0.0049 (9)0.0059 (8)0.0087 (9)
C100.0167 (8)0.0195 (9)0.0239 (10)0.0015 (7)0.0025 (8)0.0012 (8)
C110.0107 (7)0.0207 (9)0.0158 (9)0.0037 (7)0.0026 (7)0.0025 (8)
C120.0164 (8)0.0226 (9)0.0177 (10)0.0013 (8)0.0039 (8)0.0017 (7)
C130.0179 (8)0.0323 (10)0.0142 (9)0.0038 (9)0.0017 (7)0.0013 (9)
C140.0145 (8)0.0267 (10)0.0221 (10)0.0019 (8)0.0001 (8)0.0115 (8)
C150.0187 (9)0.0163 (9)0.0320 (11)0.0024 (8)0.0015 (8)0.0057 (8)
C160.0165 (8)0.0204 (9)0.0204 (9)0.0048 (8)0.0000 (8)0.0005 (8)
N10.0125 (6)0.0175 (7)0.0130 (8)0.0033 (6)0.0023 (6)0.0018 (6)
O10.0211 (6)0.0173 (6)0.0143 (6)0.0001 (5)0.0030 (6)0.0005 (5)
O20.0157 (6)0.0207 (6)0.0194 (6)0.0011 (5)0.0011 (5)0.0035 (5)
P10.01393 (19)0.0150 (2)0.0141 (2)0.00099 (17)0.00017 (19)0.00013 (19)
S20.0221 (2)0.0173 (2)0.0209 (2)0.00575 (18)0.0001 (2)0.0006 (2)
Geometric parameters (Å, º) top
C1—O11.455 (2)C7—H70.9500
C1—H1A0.9800C8—C91.378 (3)
C1—H1B0.9800C8—H80.9500
C1—H1C0.9800C9—C101.387 (3)
C2—O21.443 (2)C9—H90.9500
C2—H2A0.9800C10—H100.9500
C2—H2B0.9800C11—C161.390 (2)
C2—H2C0.9800C11—C121.390 (2)
C3—N11.483 (2)C12—C131.380 (3)
C3—C51.510 (2)C12—H120.9500
C3—H3A0.9900C13—C141.390 (3)
C3—H3B0.9900C13—H130.9500
C4—N11.479 (2)C14—C151.377 (3)
C4—C111.513 (2)C14—H140.9500
C4—H4A0.9900C15—C161.389 (3)
C4—H4B0.9900C15—H150.9500
C5—C61.389 (2)C16—H160.9500
C5—C101.392 (2)N1—P11.6343 (15)
C6—C71.395 (3)O1—P11.5796 (12)
C6—H60.9500O2—P11.5961 (12)
C7—C81.384 (3)P1—S21.9299 (6)
O1—C1—H1A109.5C8—C9—C10120.25 (18)
O1—C1—H1B109.5C8—C9—H9119.9
H1A—C1—H1B109.5C10—C9—H9119.9
O1—C1—H1C109.5C9—C10—C5120.73 (18)
H1A—C1—H1C109.5C9—C10—H10119.6
H1B—C1—H1C109.5C5—C10—H10119.6
O2—C2—H2A109.5C16—C11—C12118.45 (16)
O2—C2—H2B109.5C16—C11—C4121.75 (16)
H2A—C2—H2B109.5C12—C11—C4119.79 (16)
O2—C2—H2C109.5C13—C12—C11121.18 (18)
H2A—C2—H2C109.5C13—C12—H12119.4
H2B—C2—H2C109.5C11—C12—H12119.4
N1—C3—C5111.89 (13)C12—C13—C14119.78 (18)
N1—C3—H3A109.2C12—C13—H13120.1
C5—C3—H3A109.2C14—C13—H13120.1
N1—C3—H3B109.2C15—C14—C13119.71 (17)
C5—C3—H3B109.2C15—C14—H14120.1
H3A—C3—H3B107.9C13—C14—H14120.1
N1—C4—C11114.15 (14)C14—C15—C16120.36 (17)
N1—C4—H4A108.7C14—C15—H15119.8
C11—C4—H4A108.7C16—C15—H15119.8
N1—C4—H4B108.7C15—C16—C11120.51 (17)
C11—C4—H4B108.7C15—C16—H16119.7
H4A—C4—H4B107.6C11—C16—H16119.7
C6—C5—C10118.53 (17)C4—N1—C3114.98 (13)
C6—C5—C3121.21 (16)C4—N1—P1123.50 (11)
C10—C5—C3120.26 (17)C3—N1—P1119.30 (11)
C5—C6—C7120.77 (17)C1—O1—P1119.78 (11)
C5—C6—H6119.6C2—O2—P1119.39 (12)
C7—C6—H6119.6O1—P1—O299.37 (7)
C8—C7—C6119.81 (18)O1—P1—N1104.62 (7)
C8—C7—H7120.1O2—P1—N1105.89 (7)
C6—C7—H7120.1O1—P1—S2115.68 (5)
C9—C8—C7119.91 (18)O2—P1—S2114.41 (5)
C9—C8—H8120.0N1—P1—S2115.14 (6)
C7—C8—H8120.0
N1—C3—C5—C6101.64 (19)C12—C11—C16—C150.2 (2)
N1—C3—C5—C1079.63 (19)C4—C11—C16—C15179.07 (16)
C10—C5—C6—C70.6 (3)C11—C4—N1—C368.76 (18)
C3—C5—C6—C7179.38 (16)C11—C4—N1—P194.17 (17)
C5—C6—C7—C80.0 (3)C5—C3—N1—C475.77 (18)
C6—C7—C8—C90.6 (3)C5—C3—N1—P1120.53 (14)
C7—C8—C9—C100.5 (3)C1—O1—P1—O261.56 (14)
C8—C9—C10—C50.1 (3)C1—O1—P1—N1170.81 (13)
C6—C5—C10—C90.7 (3)C1—O1—P1—S261.40 (14)
C3—C5—C10—C9179.47 (16)C2—O2—P1—O1166.17 (12)
N1—C4—C11—C16107.68 (18)C2—O2—P1—N185.59 (14)
N1—C4—C11—C1273.1 (2)C2—O2—P1—S242.31 (14)
C16—C11—C12—C130.0 (3)C4—N1—P1—O1108.86 (14)
C4—C11—C12—C13179.28 (16)C3—N1—P1—O153.38 (13)
C11—C12—C13—C140.5 (3)C4—N1—P1—O2146.71 (13)
C12—C13—C14—C150.8 (3)C3—N1—P1—O251.06 (14)
C13—C14—C15—C160.7 (3)C4—N1—P1—S219.25 (16)
C14—C15—C16—C110.1 (3)C3—N1—P1—S2178.52 (10)

Experimental details

Crystal data
Chemical formulaC16H20NO2PS
Mr321.36
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)6.8377 (3), 8.1115 (4), 28.6187 (16)
V3)1587.31 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.75 × 0.55 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.802, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
4397, 3010, 2747
Rint0.014
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.064, 1.03
No. of reflections3010
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.31
Absolute structureFlack (1983), 982 Friedel pairs
Absolute structure parameter0.04 (7)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004).

 

Acknowledgements

Support of this investigation by the Islamic Azad University, North Tehran Branch, is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPourayoubi, M., Jasinski, J. P., Shoghpour Bayraq, S., Eshghi, H., Keeley, A. C., Bruno, G. & Amiri Rudbari, H. (2012). Acta Cryst. C68, o399–o404.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSabbaghi, F., Pourayoubi, M. & Nečas, M. (2012). Acta Cryst. E68, o2891.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds