metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′-bi­pyridine-κ2N,N′)bis­­(dicyan­amido-κN1)cadmium

aDepartment of chemistry, CICECO, University of Aveiro, 3810-193 Portugal
*Correspondence e-mail: zlin@ua.pt

(Received 1 October 2012; accepted 24 October 2012; online 31 October 2012)

In the title compound, [Cd(C2N3)2(C10H8N2)2], the CdII ion is coordinated in a distorted octa­hedral environment by four N atoms from two chelating 2,2′-bipyridine ligands and two N atoms from two monodentate dicyanamide ligands. The dihedral angle between the mean planes of the two bipyridine ligands is 87.67 (6)°.

Related literature

For background to materials with metal–bpy–dca framework structures, see: Mal et al. (2006[Mal, D., Tuchagues, J.-P., Chakraborty, S., Mukherjee, A. K., Sen, R. & Koner, S. (2006). Inorg. Chim. Acta, 359, 4431-4435.], 2007[Mal, D., Koner, S., Tuchagues, J.-P. & Rosair, G. M. (2007). Inorg. Chim. Acta, 360, 3575-3580.]). For related structures, see: Wang et al. (2012[Wang, H., Wang, S. & Lang, Y. (2012). Acta Cryst. E68, m569.]); Luo et al. (2002[Luo, J.-H., Hong, M.-C., Cao, R., Liang, Y.-C., Zhao, Y.-J., Wang, R.-H. & Weng, J.-B. (2002). Polyhedron, 21, 893-898.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C2N3)2(C10H8N2)2]

  • Mr = 556.87

  • Monoclinic, P 21 /c

  • a = 9.5586 (3) Å

  • b = 14.9260 (5) Å

  • c = 16.7007 (6) Å

  • β = 100.521 (2)°

  • V = 2342.66 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 150 K

  • 0.30 × 0.16 × 0.03 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.760, Tmax = 0.972

  • 25970 measured reflections

  • 6309 independent reflections

  • 5064 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.069

  • S = 1.01

  • 6309 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: SMART (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Coordination polymers containing dicyanamide [dca-, N(CN)2-] have gained attention in the last decade due to their versatile binding modes where the three possible donor sites allow monodentate to pentadentate binding to the metal centre (Mal et al., 2006; Wang et al., 2012; Luo et al. 2002). Herein, we present the crystal structure of the title complex.

The molecular structure of the title compound is shown in Fig. 1. The CdII ion is coordinated by six N atoms, two of which are from monodentate dca ligands and four N atoms are from from two chelating bpy ligands. The coordination geometry is distorted octahedral. The Cd—Nbpy and Cd—Ndca bond distances are comparable with a previously reported cadmium-dca-bpy complex (Luo et al., 2002). The Cd—Ndicyanamido bond lengths are slightly shorter than the Cd—Nbipyridine lengths. The crystal structure of the Mn(II) analog of the title compound has been published previously (Wang et al., 2012).

Related literature top

For background to materials with metal–bpy–dca framework structures, see: Mal et al. (2006, 2007). For related structures, see: Wang et al. (2012); Luo et al. (2002).

Experimental top

An aqueous solution (5 ml) of dca (0.178 g, 2 mmol) was mixed with an aqueous solution (5 ml) of Cd(NO3)2.4H2O (0.155 g, 0.5 mmol), at room temperature. The solution was stirred for 10 min. Then a methanolic solution (8 ml) containing bpy (0.312 g, 2 mmol) was added drop wise into the above solution. After the mixture was stirred for about 15 minutes at room temperature. It was filtrated and the filtrate was left for slow evaporation in air. Plate-shaped colorless crystals of [Cd(N(CN)2)2(bpy)2] were obtained from the mother liquor by slow evaporation at room temperature after two weeks.

Refinement top

H atoms were placed in calculated positions with C—H = 0.95Å and were included in the refinement with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with 30% displacement ellipsoids.
Bis(2,2'-bipyridine-κ2N,N')bis(dicyanamido- κN1)cadmium top
Crystal data top
[Cd(C2N3)2(C10H8N2)2]F(000) = 1112
Mr = 556.87Dx = 1.579 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 320 reflections
a = 9.5586 (3) Åθ = 3.0–29.2°
b = 14.9260 (5) ŵ = 0.97 mm1
c = 16.7007 (6) ÅT = 150 K
β = 100.521 (2)°Plate, colourless
V = 2342.66 (14) Å30.30 × 0.16 × 0.03 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
6309 independent reflections
Radiation source: fine-focus sealed tube5064 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 29.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1213
Tmin = 0.760, Tmax = 0.972k = 1920
25970 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0331P)2 + 0.4905P]
where P = (Fo2 + 2Fc2)/3
6309 reflections(Δ/σ)max = 0.003
316 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cd(C2N3)2(C10H8N2)2]V = 2342.66 (14) Å3
Mr = 556.87Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5586 (3) ŵ = 0.97 mm1
b = 14.9260 (5) ÅT = 150 K
c = 16.7007 (6) Å0.30 × 0.16 × 0.03 mm
β = 100.521 (2)°
Data collection top
Bruker SMART CCD
diffractometer
6309 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5064 reflections with I > 2σ(I)
Tmin = 0.760, Tmax = 0.972Rint = 0.033
25970 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.01Δρmax = 0.48 e Å3
6309 reflectionsΔρmin = 0.39 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.516014 (15)0.704173 (9)0.110929 (9)0.02649 (5)
N10.41014 (17)0.82838 (11)0.02936 (11)0.0301 (4)
C20.2810 (2)0.86215 (15)0.03317 (15)0.0377 (5)
H20.23210.83970.07360.045*
C30.2167 (2)0.92750 (15)0.01854 (16)0.0427 (6)
H30.12550.94990.01390.051*
C40.2872 (3)0.95978 (15)0.07727 (17)0.0458 (6)
H40.24471.00440.11450.055*
C50.4210 (2)0.92643 (14)0.08159 (15)0.0402 (5)
H50.47190.94850.12130.048*
C60.4796 (2)0.86051 (12)0.02727 (12)0.0278 (4)
C70.6241 (2)0.82153 (13)0.02755 (13)0.0283 (4)
C80.7115 (2)0.85346 (15)0.07896 (15)0.0407 (5)
H80.68060.90090.11590.049*
C90.8445 (3)0.81530 (16)0.07568 (18)0.0502 (7)
H90.90600.83660.11020.060*
C100.8865 (2)0.74695 (16)0.02259 (17)0.0447 (6)
H100.97700.71960.02000.054*
C110.7949 (2)0.71808 (14)0.02755 (15)0.0356 (5)
H110.82440.67100.06510.043*
N120.66591 (17)0.75460 (11)0.02463 (10)0.0271 (3)
N130.61503 (18)0.80134 (11)0.21846 (11)0.0287 (4)
C140.7419 (2)0.84160 (15)0.22300 (13)0.0348 (5)
H140.79740.82800.18280.042*
C150.7948 (2)0.90175 (16)0.28339 (15)0.0418 (5)
H150.88520.92900.28520.050*
C160.7134 (2)0.92151 (16)0.34129 (15)0.0424 (6)
H160.74700.96290.38360.051*
C170.5827 (2)0.88063 (14)0.33726 (13)0.0355 (5)
H170.52550.89370.37670.043*
C180.5361 (2)0.82024 (12)0.27498 (12)0.0264 (4)
C190.3954 (2)0.77364 (12)0.26621 (12)0.0267 (4)
C200.3047 (2)0.78768 (14)0.32058 (15)0.0397 (5)
H200.33190.82640.36590.048*
C210.1738 (3)0.74494 (16)0.30853 (16)0.0448 (6)
H210.10940.75540.34470.054*
C220.1381 (2)0.68769 (15)0.24420 (15)0.0392 (5)
H220.04990.65660.23540.047*
C230.2340 (2)0.67635 (15)0.19240 (14)0.0372 (5)
H230.20930.63720.14720.045*
N240.36027 (18)0.71798 (11)0.20291 (11)0.0309 (4)
N250.6584 (2)0.59039 (14)0.16670 (14)0.0484 (5)
C260.7001 (2)0.54121 (14)0.21884 (15)0.0354 (5)
N270.73104 (19)0.48378 (13)0.27762 (12)0.0397 (4)
C280.8637 (2)0.46549 (14)0.31152 (14)0.0353 (5)
N290.9733 (2)0.44417 (17)0.34649 (15)0.0559 (6)
N300.3634 (2)0.61331 (13)0.02748 (12)0.0435 (5)
C310.2583 (2)0.59524 (13)0.01597 (14)0.0343 (5)
N320.1425 (2)0.58623 (12)0.06940 (13)0.0432 (5)
C330.0734 (2)0.51007 (15)0.08012 (14)0.0344 (5)
N340.00240 (19)0.44904 (14)0.09561 (14)0.0459 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.02787 (8)0.03095 (8)0.02186 (8)0.00212 (6)0.00773 (6)0.00153 (6)
N10.0289 (9)0.0325 (8)0.0294 (10)0.0026 (7)0.0065 (8)0.0025 (7)
C20.0318 (11)0.0428 (12)0.0401 (13)0.0052 (9)0.0111 (10)0.0044 (10)
C30.0324 (11)0.0428 (12)0.0510 (16)0.0109 (10)0.0020 (11)0.0049 (11)
C40.0445 (13)0.0374 (12)0.0509 (16)0.0089 (10)0.0035 (12)0.0056 (11)
C50.0443 (13)0.0370 (11)0.0388 (14)0.0041 (10)0.0062 (11)0.0084 (10)
C60.0314 (10)0.0264 (9)0.0249 (10)0.0007 (8)0.0031 (8)0.0048 (8)
C70.0321 (10)0.0272 (9)0.0269 (11)0.0009 (8)0.0090 (9)0.0036 (8)
C80.0475 (13)0.0372 (11)0.0422 (14)0.0033 (10)0.0212 (11)0.0083 (10)
C90.0491 (14)0.0480 (14)0.0626 (18)0.0002 (11)0.0347 (14)0.0078 (12)
C100.0346 (12)0.0457 (13)0.0589 (17)0.0044 (10)0.0223 (12)0.0011 (12)
C110.0329 (11)0.0353 (11)0.0410 (13)0.0065 (9)0.0133 (10)0.0006 (9)
N120.0288 (8)0.0284 (8)0.0255 (9)0.0024 (7)0.0088 (7)0.0001 (7)
N130.0280 (8)0.0356 (9)0.0227 (9)0.0041 (7)0.0049 (7)0.0012 (7)
C140.0297 (11)0.0466 (12)0.0283 (12)0.0080 (9)0.0057 (9)0.0051 (10)
C150.0361 (12)0.0536 (13)0.0350 (13)0.0155 (10)0.0051 (10)0.0047 (11)
C160.0421 (13)0.0481 (13)0.0354 (14)0.0117 (10)0.0034 (11)0.0138 (11)
C170.0369 (11)0.0419 (11)0.0283 (12)0.0028 (9)0.0074 (9)0.0074 (9)
C180.0299 (10)0.0275 (9)0.0217 (10)0.0009 (8)0.0043 (8)0.0017 (8)
C190.0301 (10)0.0269 (9)0.0239 (10)0.0005 (8)0.0072 (8)0.0025 (8)
C200.0425 (13)0.0434 (12)0.0376 (13)0.0101 (10)0.0188 (11)0.0136 (10)
C210.0454 (13)0.0496 (13)0.0473 (16)0.0104 (11)0.0290 (12)0.0103 (12)
C220.0318 (11)0.0450 (12)0.0436 (14)0.0107 (9)0.0145 (10)0.0046 (10)
C230.0367 (12)0.0444 (11)0.0326 (12)0.0116 (10)0.0118 (10)0.0085 (10)
N240.0298 (9)0.0382 (9)0.0261 (9)0.0071 (7)0.0087 (7)0.0058 (7)
N250.0481 (12)0.0464 (11)0.0526 (14)0.0119 (9)0.0146 (11)0.0123 (10)
C260.0342 (11)0.0325 (10)0.0420 (14)0.0008 (9)0.0133 (10)0.0061 (10)
N270.0353 (10)0.0417 (10)0.0427 (12)0.0015 (8)0.0083 (9)0.0088 (9)
C280.0379 (12)0.0388 (11)0.0310 (12)0.0051 (9)0.0110 (10)0.0014 (9)
N290.0376 (12)0.0804 (16)0.0485 (14)0.0001 (11)0.0051 (10)0.0099 (13)
N300.0526 (12)0.0437 (10)0.0341 (11)0.0161 (10)0.0079 (10)0.0037 (9)
C310.0452 (13)0.0306 (10)0.0307 (12)0.0054 (9)0.0166 (11)0.0002 (9)
N320.0390 (11)0.0396 (10)0.0486 (13)0.0037 (8)0.0019 (10)0.0130 (9)
C330.0281 (10)0.0406 (11)0.0334 (12)0.0036 (9)0.0028 (9)0.0059 (10)
N340.0316 (10)0.0450 (11)0.0561 (15)0.0024 (9)0.0052 (10)0.0059 (10)
Geometric parameters (Å, º) top
Cd—N252.267 (2)N13—C141.343 (3)
Cd—N302.273 (2)C14—C151.376 (3)
Cd—N122.3347 (15)C14—H140.9500
Cd—N242.3352 (16)C15—C161.379 (3)
Cd—N132.3672 (17)C15—H150.9500
Cd—N12.4111 (17)C16—C171.381 (3)
N1—C61.339 (3)C16—H160.9500
N1—C21.345 (3)C17—C181.387 (3)
C2—C31.372 (3)C17—H170.9500
C2—H20.9500C18—C191.497 (3)
C3—C41.374 (4)C19—N241.338 (3)
C3—H30.9500C19—C201.381 (3)
C4—C51.387 (3)C20—C211.387 (3)
C4—H40.9500C20—H200.9500
C5—C61.385 (3)C21—C221.366 (3)
C5—H50.9500C21—H210.9500
C6—C71.500 (3)C22—C231.381 (3)
C7—N121.338 (3)C22—H220.9500
C7—C81.388 (3)C23—N241.341 (3)
C8—C91.385 (3)C23—H230.9500
C8—H80.9500N25—C261.153 (3)
C9—C101.363 (4)C26—N271.296 (3)
C9—H90.9500N27—C281.320 (3)
C10—C111.386 (3)C28—N291.147 (3)
C10—H100.9500N30—C311.159 (3)
C11—N121.341 (3)C31—N321.296 (3)
C11—H110.9500N32—C331.311 (3)
N13—C181.342 (2)C33—N341.137 (3)
N25—Cd—N3094.29 (8)C7—N12—C11119.39 (17)
N25—Cd—N1296.04 (6)C7—N12—Cd119.90 (12)
N30—Cd—N12102.20 (6)C11—N12—Cd120.70 (14)
N25—Cd—N24101.70 (7)C18—N13—C14118.97 (18)
N30—Cd—N2492.35 (6)C18—N13—Cd117.65 (13)
N12—Cd—N24156.12 (6)C14—N13—Cd123.28 (14)
N25—Cd—N1391.17 (7)N13—C14—C15122.7 (2)
N30—Cd—N13162.47 (6)N13—C14—H14118.6
N12—Cd—N1393.75 (6)C15—C14—H14118.6
N24—Cd—N1370.21 (6)C14—C15—C16118.3 (2)
N25—Cd—N1165.14 (6)C14—C15—H15120.8
N30—Cd—N187.49 (7)C16—C15—H15120.8
N12—Cd—N169.20 (5)C17—C16—C15119.5 (2)
N24—Cd—N192.96 (6)C17—C16—H16120.2
N13—Cd—N191.49 (6)C15—C16—H16120.2
C6—N1—C2118.44 (19)C16—C17—C18119.20 (19)
C6—N1—Cd117.60 (13)C16—C17—H17120.4
C2—N1—Cd123.74 (14)C18—C17—H17120.4
N1—C2—C3123.1 (2)N13—C18—C17121.26 (18)
N1—C2—H2118.4N13—C18—C19116.36 (17)
C3—C2—H2118.4C17—C18—C19122.38 (18)
C2—C3—C4118.5 (2)N24—C19—C20121.09 (19)
C2—C3—H3120.8N24—C19—C18117.21 (17)
C4—C3—H3120.8C20—C19—C18121.70 (19)
C3—C4—C5119.2 (2)C19—C20—C21119.6 (2)
C3—C4—H4120.4C19—C20—H20120.2
C5—C4—H4120.4C21—C20—H20120.2
C6—C5—C4119.2 (2)C22—C21—C20119.4 (2)
C6—C5—H5120.4C22—C21—H21120.3
C4—C5—H5120.4C20—C21—H21120.3
N1—C6—C5121.58 (19)C21—C22—C23118.0 (2)
N1—C6—C7116.02 (18)C21—C22—H22121.0
C5—C6—C7122.40 (19)C23—C22—H22121.0
N12—C7—C8121.14 (19)N24—C23—C22123.1 (2)
N12—C7—C6116.98 (17)N24—C23—H23118.4
C8—C7—C6121.88 (19)C22—C23—H23118.4
C9—C8—C7119.1 (2)C19—N24—C23118.77 (17)
C9—C8—H8120.4C19—N24—Cd118.43 (12)
C7—C8—H8120.4C23—N24—Cd122.69 (14)
C10—C9—C8119.5 (2)C26—N25—Cd152.39 (18)
C10—C9—H9120.2N25—C26—N27173.1 (2)
C8—C9—H9120.2C26—N27—C28122.02 (19)
C9—C10—C11118.8 (2)N29—C28—N27172.9 (2)
C9—C10—H10120.6C31—N30—Cd155.35 (19)
C11—C10—H10120.6N30—C31—N32171.7 (2)
N12—C11—C10122.0 (2)C31—N32—C33122.00 (19)
N12—C11—H11119.0N34—C33—N32172.3 (2)
C10—C11—H11119.0

Experimental details

Crystal data
Chemical formula[Cd(C2N3)2(C10H8N2)2]
Mr556.87
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)9.5586 (3), 14.9260 (5), 16.7007 (6)
β (°) 100.521 (2)
V3)2342.66 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.30 × 0.16 × 0.03
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.760, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
25970, 6309, 5064
Rint0.033
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.069, 1.01
No. of reflections6309
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.39

Computer programs: SMART (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

DM (SFRH/BPD/65056/2009) wishes to thank FCT for financial support.

References

First citationBruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLuo, J.-H., Hong, M.-C., Cao, R., Liang, Y.-C., Zhao, Y.-J., Wang, R.-H. & Weng, J.-B. (2002). Polyhedron, 21, 893–898.  Web of Science CSD CrossRef CAS Google Scholar
First citationMal, D., Koner, S., Tuchagues, J.-P. & Rosair, G. M. (2007). Inorg. Chim. Acta, 360, 3575–3580.  Web of Science CSD CrossRef CAS Google Scholar
First citationMal, D., Tuchagues, J.-P., Chakraborty, S., Mukherjee, A. K., Sen, R. & Koner, S. (2006). Inorg. Chim. Acta, 359, 4431–4435.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Wang, S. & Lang, Y. (2012). Acta Cryst. E68, m569.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds