metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-[imino­(phen­yl)meth­yl]-5-meth­­oxy­phenolato-κ2N,O1}nickel(II)

aCollege of Environmental Science and Engineering, Guilin University of Technology, Guangxi Key Laboratory of Environmental Engineering, Protection and Assessment, Guilin 541004, People's Republic of China
*Correspondence e-mail: 657683458@qq.com

(Received 9 October 2012; accepted 16 October 2012; online 20 October 2012)

The title complex, [Ni(C14H12NO2)2], lies about an inversion center. The NiII atom is coordinated in a slightly distorted square-planar geometry by two O atoms and two N atoms from two 2-[imino­(phen­yl)meth­yl]-5-meth­oxy­phenolate ligands. The dihedral angle between the symmetry-unique phenyl and benzene rings is 73.2 (1)°.

Related literature

For background to 2-imino­(meth­yl)phenol compounds, see: Zhang et al. (2008[Zhang, S. H., Zeng, M. H. & Liang, H. (2008). Chin. J. Struct. Chem. 27, 785-788.], 2009[Zhang, S. H., Song, Y., Liang, H. & Zeng, M. H. (2009). CrystEngComm, 11, 865-872.]); Jiang et al. (2003[Jiang, Y. M., Zhang, S. H., Xiao, Y., Zhong, X. X. & Zhou, Z. Y. (2003). Chin. J. Struct. Chem. 22, 355-358.]); Liu et al. (2009[Liu, Z. L., Han, W. H., Liu, C. M., Di, X. W., Zhang, J. & Zhang, D. Q. (2009). Bull. Chem. Soc. Jpn, 82, 582-584.]). For a related structure, see: Bernès (2010)[Bernès, S. (2010). Acta Cryst. E66, m100.].

[Scheme 1]

Experimental

Crystal data
  • [Ni(C14H12NO2)2]

  • Mr = 511.20

  • Monoclinic, P 21 /n

  • a = 11.882 (2) Å

  • b = 5.4983 (10) Å

  • c = 17.494 (3) Å

  • β = 91.913 (2)°

  • V = 1142.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 296 K

  • 0.24 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.244, Tmax = 0.453

  • 5526 measured reflections

  • 2010 independent reflections

  • 1680 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.064

  • S = 1.03

  • 2010 reflections

  • 161 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-Imino(methyl)phenol compounds have been studied for many years (Jiang et al., 2003; Zhang et al., 2008, 2009; Bernés 2010; Liu et al., 2009) and have attracted interest because of their magnetic properties. The crystal structure of the title compound (I) is presented herein.

The molecular structure of (I) is shown in Fig .1. The NiII ion lies on a centre of inversion and is coordinated by two O atoms and two N atoms from two bidentate ligands, forming a slightly distorted square-planar geometry. The dihedral angle between the symmetry unique phenyl and benzene rings is 73.2 (1) °.

Related literature top

For background to 2-imino(methyl)phenol compounds, see: Zhang et al. (2008, 2009); Jiang et al. (2003); Liu et al. (2009). For a related structure, see: Bernès (2010).

Experimental top

Complex (I) was prepared from a mixture of 2-hydroxy-4-methoxy benzophenone (1 mmol, 0.228 g), ammonia (25%, 0.5 ml), triethylamine (0.5 ml), nickel(II) acetate tetrahydrate (0.5 mmol, 0.127 g) and methanol(8 mL) sealed in a 15 mL teflon-lined stainless steel bomb, and kept at 393 K for 120 h under autogenous pressure. After the reaction was slowly cooled to room temperature, green rectangular plates were produced (yield: 63%, based on Nickel). Anal. Calcd for C28H24N2NiO4(%): C, 65.78; H, 4.73; N, 5.48. Found(%): C, 65.72; H, 4.76; N, 5.53.

Refinement top

H atoms were positioned geometrically and refined with a riding model, with distances 0.86(N—H), 0.96(CH3) or 0.93 Å (aromatic ring), and with Uiso(H) = 1.2 Ueq(aromatic ring, N—H) or Uiso(H) = 1.5 Ueq(CH3).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30 % probability displacement ellipsoids. H atoms bonded to atoms are not shown. Symmetry code (a); 1-x, -y, 2-z.
Bis{2-[imino(phenyl)methyl]-5-methoxyphenolato- κ2N,O1}nickel(II) top
Crystal data top
[Ni(C14H12NO2)2]F(000) = 532
Mr = 511.20Dx = 1.486 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2010 reflections
a = 11.882 (2) Åθ = 2.0–25.0°
b = 5.4983 (10) ŵ = 0.89 mm1
c = 17.494 (3) ÅT = 296 K
β = 91.913 (2)°Plate, green
V = 1142.3 (4) Å30.24 × 0.15 × 0.10 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
2010 independent reflections
Radiation source: fine-focus sealed tube1680 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1411
Tmin = 0.244, Tmax = 0.453k = 66
5526 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0308P)2 + 0.224P]
where P = (Fo2 + 2Fc2)/3
2010 reflections(Δ/σ)max < 0.001
161 parametersΔρmax = 0.19 e Å3
2 restraintsΔρmin = 0.15 e Å3
Crystal data top
[Ni(C14H12NO2)2]V = 1142.3 (4) Å3
Mr = 511.20Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.882 (2) ŵ = 0.89 mm1
b = 5.4983 (10) ÅT = 296 K
c = 17.494 (3) Å0.24 × 0.15 × 0.10 mm
β = 91.913 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2010 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1680 reflections with I > 2σ(I)
Tmin = 0.244, Tmax = 0.453Rint = 0.021
5526 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0252 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
2010 reflectionsΔρmin = 0.15 e Å3
161 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.47072 (17)0.1107 (4)0.71936 (11)0.0451 (5)
H10.51820.02110.72900.054*
C20.41390 (18)0.1315 (4)0.64899 (11)0.0538 (5)
H20.42370.01400.61160.065*
C30.34319 (17)0.3250 (4)0.63443 (11)0.0514 (5)
H30.30440.33740.58750.062*
C40.33005 (16)0.4994 (4)0.68923 (12)0.0495 (5)
H40.28280.63110.67920.059*
C50.38659 (15)0.4814 (3)0.75956 (11)0.0428 (5)
H50.37730.60120.79630.051*
C60.45685 (14)0.2859 (3)0.77523 (9)0.0338 (4)
C70.50867 (14)0.2546 (3)0.85404 (9)0.0346 (4)
C80.59499 (14)0.4187 (3)0.88197 (9)0.0336 (4)
C90.63412 (15)0.4204 (3)0.96059 (10)0.0359 (4)
C100.71438 (15)0.5983 (4)0.98239 (10)0.0410 (4)
H100.73760.60931.03360.049*
C110.75958 (15)0.7561 (4)0.93082 (11)0.0411 (4)
C120.72465 (16)0.7507 (4)0.85333 (10)0.0428 (5)
H120.75550.85560.81800.051*
C130.64357 (15)0.5853 (4)0.83168 (10)0.0389 (4)
H130.61910.58300.78060.047*
C140.88453 (18)1.0924 (4)0.91151 (13)0.0564 (6)
H14A0.92371.01600.87080.085*
H14B0.93581.19400.94060.085*
H14C0.82411.18980.89040.085*
Ni10.50000.00001.00000.03463 (12)
N10.47005 (13)0.0801 (3)0.89494 (8)0.0404 (4)
H1A0.42340.01530.87120.048*
O20.84011 (12)0.9107 (3)0.96004 (8)0.0573 (4)
O10.60041 (10)0.2698 (2)1.01257 (7)0.0437 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0554 (12)0.0395 (11)0.0399 (10)0.0065 (10)0.0067 (9)0.0015 (9)
C20.0702 (14)0.0538 (14)0.0369 (11)0.0003 (12)0.0086 (10)0.0047 (10)
C30.0531 (12)0.0599 (14)0.0401 (11)0.0120 (11)0.0150 (9)0.0128 (10)
C40.0407 (11)0.0483 (12)0.0587 (13)0.0024 (10)0.0116 (9)0.0105 (11)
C50.0416 (10)0.0390 (11)0.0475 (11)0.0029 (9)0.0031 (8)0.0009 (9)
C60.0330 (9)0.0353 (10)0.0329 (9)0.0041 (8)0.0017 (7)0.0061 (8)
C70.0343 (9)0.0371 (10)0.0322 (9)0.0030 (8)0.0011 (7)0.0004 (8)
C80.0350 (10)0.0356 (9)0.0301 (9)0.0030 (8)0.0002 (7)0.0006 (7)
C90.0369 (10)0.0369 (10)0.0339 (9)0.0031 (8)0.0009 (8)0.0010 (8)
C100.0449 (11)0.0458 (11)0.0320 (9)0.0028 (9)0.0037 (8)0.0015 (9)
C110.0365 (10)0.0430 (11)0.0439 (10)0.0048 (9)0.0016 (8)0.0052 (9)
C120.0426 (10)0.0463 (12)0.0397 (10)0.0081 (9)0.0045 (8)0.0035 (9)
C130.0400 (10)0.0433 (11)0.0334 (10)0.0005 (9)0.0001 (8)0.0030 (8)
C140.0523 (13)0.0493 (12)0.0680 (14)0.0138 (11)0.0090 (11)0.0067 (11)
Ni10.0386 (2)0.0381 (2)0.02698 (17)0.00429 (15)0.00215 (12)0.00705 (14)
N10.0476 (9)0.0416 (9)0.0316 (7)0.0113 (7)0.0048 (7)0.0054 (7)
O20.0616 (9)0.0619 (9)0.0483 (8)0.0262 (8)0.0007 (7)0.0050 (7)
O10.0501 (8)0.0482 (8)0.0323 (6)0.0107 (6)0.0051 (5)0.0080 (6)
Geometric parameters (Å, º) top
C1—C61.387 (3)C9—C101.410 (3)
C1—C21.389 (3)C10—C111.374 (3)
C1—H10.9300C10—H100.9300
C2—C31.374 (3)C11—O21.366 (2)
C2—H20.9300C11—C121.405 (3)
C3—C41.369 (3)C12—C131.369 (3)
C3—H30.9300C12—H120.9300
C4—C51.385 (3)C13—H130.9300
C4—H40.9300C14—O21.424 (3)
C5—C61.383 (2)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—C71.501 (2)C14—H14C0.9600
C7—N11.290 (2)Ni1—N11.9118 (14)
C7—C81.439 (2)Ni1—N1i1.9118 (14)
C8—C131.407 (3)Ni1—O11.9120 (13)
C8—C91.437 (2)Ni1—O1i1.9120 (13)
C9—O11.303 (2)N1—H1A0.8600
C6—C1—C2120.12 (19)C11—C10—H10118.8
C6—C1—H1119.9C9—C10—H10118.8
C2—C1—H1119.9O2—C11—C10115.56 (16)
C3—C2—C1120.3 (2)O2—C11—C12123.72 (17)
C3—C2—H2119.9C10—C11—C12120.71 (17)
C1—C2—H2119.9C13—C12—C11117.63 (17)
C4—C3—C2119.73 (18)C13—C12—H12121.2
C4—C3—H3120.1C11—C12—H12121.2
C2—C3—H3120.1C12—C13—C8123.98 (16)
C3—C4—C5120.59 (19)C12—C13—H13118.0
C3—C4—H4119.7C8—C13—H13118.0
C5—C4—H4119.7O2—C14—H14A109.5
C6—C5—C4120.21 (18)O2—C14—H14B109.5
C6—C5—H5119.9H14A—C14—H14B109.5
C4—C5—H5119.9O2—C14—H14C109.5
C5—C6—C1119.06 (16)H14A—C14—H14C109.5
C5—C6—C7119.85 (16)H14B—C14—H14C109.5
C1—C6—C7120.87 (16)N1—Ni1—N1i180.00 (2)
N1—C7—C8122.72 (15)N1—Ni1—O191.56 (6)
N1—C7—C6116.88 (15)N1i—Ni1—O188.44 (6)
C8—C7—C6120.39 (15)N1—Ni1—O1i88.44 (6)
C13—C8—C9117.89 (16)N1i—Ni1—O1i91.56 (6)
C13—C8—C7119.90 (15)O1—Ni1—O1i180.0
C9—C8—C7122.21 (16)C7—N1—Ni1130.26 (13)
O1—C9—C10118.23 (15)C7—N1—H1A114.9
O1—C9—C8124.53 (16)Ni1—N1—H1A114.9
C10—C9—C8117.24 (16)C11—O2—C14118.83 (16)
C11—C10—C9122.44 (17)C9—O1—Ni1128.17 (11)
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Ni(C14H12NO2)2]
Mr511.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.882 (2), 5.4983 (10), 17.494 (3)
β (°) 91.913 (2)
V3)1142.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.24 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.244, 0.453
No. of measured, independent and
observed [I > 2σ(I)] reflections
5526, 2010, 1680
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.064, 1.03
No. of reflections2010
No. of parameters161
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.15

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported financially by the Natural Science Foundation of Guangxi Province of China (No. 2010­GXNSFA013014).

References

First citationBernès, S. (2010). Acta Cryst. E66, m100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiang, Y. M., Zhang, S. H., Xiao, Y., Zhong, X. X. & Zhou, Z. Y. (2003). Chin. J. Struct. Chem. 22, 355–358.  CAS Google Scholar
First citationLiu, Z. L., Han, W. H., Liu, C. M., Di, X. W., Zhang, J. & Zhang, D. Q. (2009). Bull. Chem. Soc. Jpn, 82, 582–584.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S. H., Song, Y., Liang, H. & Zeng, M. H. (2009). CrystEngComm, 11, 865–872.  Web of Science CSD CrossRef Google Scholar
First citationZhang, S. H., Zeng, M. H. & Liang, H. (2008). Chin. J. Struct. Chem. 27, 785–788.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds