organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(Di­phenyl­methyl­­idene)pyrrolidin-2-one

aDepartment of Applied Cosmetology and Graduate Institute of Cosmetic Science, Hungkuang University, Taichung 433, Taiwan, and bDepartment of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
*Correspondence e-mail: mjchen@sunrise.hk.edu.tw

(Received 16 October 2012; accepted 23 October 2012; online 27 October 2012)

In the title compound, C17H15NO, the dihedral angle between the phenyl rings is 80.1 (2)°. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers.

Related literature

The title compound is a pyrrolidin-2-one derivative. For the preparation of related structures, see: Fujihara & Tomioka (1999[Fujihara, H. & Tomioka, K. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 2377-2382.]); Enders & Han (2008[Enders, D. & Han, J. (2008). Tetrahedron Asymmetry, 19, 1367-1371.]). For a related structure containing inter­molecular N—H⋯O=C hydrogen bonds, see: Asiri et al. (2012[Asiri, A. M., Zayed, M. E. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2020.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15NO

  • Mr = 249.30

  • Triclinic, [P \overline 1]

  • a = 7.135 (2) Å

  • b = 7.885 (2) Å

  • c = 12.184 (4) Å

  • α = 89.76 (3)°

  • β = 75.09 (3)°

  • γ = 85.65 (2)°

  • V = 660.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.70 × 0.50 × 0.35 mm

Data collection
  • Agilent Xcalibur (Sapphire3, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.542, Tmax = 1.000

  • 5549 measured reflections

  • 2999 independent reflections

  • 1951 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.225

  • S = 1.06

  • 2999 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯Oi 0.86 2.11 2.921 (2) 157
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound (I) is the side product obtained from the attempted synthesis of 5-(diphenylmethyl)pyrrolidin-2-one (Fujihara et al., 1999; Enders et al., 2008). We found that adding excess calcium hydride to the reaction mixture could improve the yield of (I). Herein we report the synthesis and crystal structure of the (I). The molecular structure of (I) is shown in Fig. 1. The two phenyl rings form a dihedral angle of 80.1 (2)°. In the crystal, pairs of molecules are linked by N—H···O hydrogen bonds to form inversion dimers (Fig. 2). The intermolecular N—H···O=C hydrogen bonds are similar to those in 3-[(E)-benzylidene]indolin-2-one (Asiri et al., 2012).

Related literature top

The title compound is a pyrrolidin-2-one derivative. For the preparation of related structures, see: Fujihara et al. (1999); Enders et al. (2008). For a related structure containing intermolecular N—H···O=C hydrogen bonds, see: Asiri et al. (2012).

Experimental top

To a mixture of 5-(hydroxydiphenylmethyl)pyrrolidin-2-one (148 mg, 0.55 mmole) and boron trifluoride etherate (0.4 ml, 3.17 mmole) in 5.5 ml of dichloromethane was added excess calcium hydride. The reaction mixture was stirred at 298 K for 24 h under N2 atmosphere. The resulting mixture was partitioned between dichloromethane (10 ml) and H2O (10 ml). The organic layer was dried over MgSO4 and concentrated in vacuo. The residue was separated by chromatography over silica gel and eluted with hexane/ethyl acetate (6/4) to afford 100 mg of the title compound (I) in 73% yield. Single crystals suitable for X-ray measurements were obtained by recrystallization from a dichloromethane/hexane solution of the title compound at room temperature.

Refinement top

All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms, with C—H = 0.93 or 0.97 Å, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with ellipsoids for non-H atoms shown at the 50% probability level.
[Figure 2] Fig. 2. A hydrogen-bonded (dashed lines) dimer of (I).
5-(Diphenylmethylidene)pyrrolidin-2-one top
Crystal data top
C17H15NOZ = 2
Mr = 249.30F(000) = 264
Triclinic, P1Dx = 1.254 Mg m3
Hall symbol: -P 1Melting point: 472 K
a = 7.135 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.885 (2) ÅCell parameters from 1065 reflections
c = 12.184 (4) Åθ = 3.0–29.0°
α = 89.76 (3)°µ = 0.08 mm1
β = 75.09 (3)°T = 293 K
γ = 85.65 (2)°Parallelpiped, colourless
V = 660.4 (4) Å30.70 × 0.50 × 0.35 mm
Data collection top
Agilent Xcalibur (Sapphire3, Gemini)
diffractometer
2999 independent reflections
Radiation source: fine-focus sealed tube1951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 16.0690 pixels mm-1θmax = 29.1°, θmin = 3.0°
ω scansh = 89
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1010
Tmin = 0.542, Tmax = 1.000l = 1616
5549 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.225H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.120P)2]
where P = (Fo2 + 2Fc2)/3
2999 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H15NOγ = 85.65 (2)°
Mr = 249.30V = 660.4 (4) Å3
Triclinic, P1Z = 2
a = 7.135 (2) ÅMo Kα radiation
b = 7.885 (2) ŵ = 0.08 mm1
c = 12.184 (4) ÅT = 293 K
α = 89.76 (3)°0.70 × 0.50 × 0.35 mm
β = 75.09 (3)°
Data collection top
Agilent Xcalibur (Sapphire3, Gemini)
diffractometer
2999 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1951 reflections with I > 2σ(I)
Tmin = 0.542, Tmax = 1.000Rint = 0.052
5549 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.225H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
2999 reflectionsΔρmin = 0.26 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.0325 (2)0.7022 (2)0.55977 (15)0.0575 (5)
N0.2544 (2)0.5943 (2)0.44030 (15)0.0405 (5)
H0A0.22240.49210.43530.049*
C10.1353 (3)0.7169 (3)0.50609 (19)0.0420 (5)
C20.2440 (3)0.8758 (3)0.4967 (2)0.0473 (6)
H2A0.23820.92160.57140.057*
H2B0.18980.96220.45430.057*
C30.4522 (3)0.8183 (3)0.4343 (2)0.0451 (6)
H3A0.50580.89920.37660.054*
H3B0.53420.80500.48650.054*
C40.4348 (3)0.6490 (3)0.38089 (18)0.0375 (5)
C50.5618 (3)0.5669 (3)0.29326 (18)0.0384 (5)
C60.5291 (3)0.3990 (3)0.24831 (18)0.0389 (5)
C70.3610 (3)0.3647 (3)0.2184 (2)0.0505 (6)
H7A0.25970.44920.22760.061*
C80.3409 (4)0.2072 (4)0.1751 (3)0.0627 (7)
H8A0.22630.18730.15600.075*
C90.4876 (4)0.0803 (3)0.1600 (2)0.0590 (7)
H9A0.47360.02560.13100.071*
C100.6556 (4)0.1125 (3)0.1885 (2)0.0543 (7)
H10A0.75640.02740.17850.065*
C110.6774 (3)0.2689 (3)0.2319 (2)0.0455 (6)
H11A0.79270.28780.25040.055*
C120.7457 (3)0.6416 (3)0.23349 (19)0.0398 (5)
C130.8740 (3)0.7062 (3)0.2886 (2)0.0477 (6)
H13A0.84600.70220.36750.057*
C141.0422 (3)0.7762 (3)0.2293 (2)0.0554 (7)
H14A1.12480.81930.26840.066*
C151.0873 (3)0.7819 (3)0.1129 (2)0.0581 (7)
H15A1.19970.82950.07280.070*
C160.9655 (4)0.7170 (3)0.0561 (2)0.0577 (7)
H16A0.99620.71950.02280.069*
C170.7963 (3)0.6473 (3)0.1157 (2)0.0499 (6)
H17A0.71530.60360.07580.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0476 (10)0.0429 (10)0.0693 (12)0.0101 (7)0.0101 (8)0.0171 (8)
N0.0425 (10)0.0255 (9)0.0486 (11)0.0054 (7)0.0022 (8)0.0062 (8)
C10.0452 (13)0.0324 (12)0.0446 (12)0.0053 (9)0.0039 (10)0.0067 (9)
C20.0496 (14)0.0324 (12)0.0553 (14)0.0083 (10)0.0036 (10)0.0102 (10)
C30.0464 (13)0.0327 (12)0.0519 (14)0.0048 (9)0.0045 (10)0.0102 (10)
C40.0385 (11)0.0258 (11)0.0471 (12)0.0032 (8)0.0089 (9)0.0018 (9)
C50.0414 (12)0.0249 (11)0.0464 (12)0.0024 (8)0.0084 (9)0.0025 (9)
C60.0439 (12)0.0270 (11)0.0409 (11)0.0011 (8)0.0030 (9)0.0027 (9)
C70.0465 (14)0.0396 (14)0.0648 (16)0.0055 (10)0.0153 (11)0.0127 (11)
C80.0571 (16)0.0543 (17)0.0803 (19)0.0059 (12)0.0232 (14)0.0149 (14)
C90.0744 (18)0.0344 (14)0.0628 (17)0.0023 (12)0.0083 (13)0.0152 (11)
C100.0607 (16)0.0270 (12)0.0652 (16)0.0085 (10)0.0016 (12)0.0015 (11)
C110.0450 (13)0.0302 (12)0.0581 (14)0.0008 (9)0.0088 (10)0.0010 (10)
C120.0401 (12)0.0241 (11)0.0509 (13)0.0065 (8)0.0062 (9)0.0026 (9)
C130.0438 (13)0.0441 (14)0.0544 (14)0.0011 (10)0.0124 (10)0.0026 (11)
C140.0420 (14)0.0516 (16)0.0744 (19)0.0060 (11)0.0176 (12)0.0064 (13)
C150.0418 (13)0.0478 (15)0.0752 (19)0.0010 (11)0.0012 (12)0.0058 (13)
C160.0631 (16)0.0500 (16)0.0502 (15)0.0026 (12)0.0026 (12)0.0028 (12)
C170.0515 (14)0.0410 (14)0.0532 (14)0.0054 (10)0.0055 (11)0.0088 (11)
Geometric parameters (Å, º) top
O—C11.222 (3)C8—C91.369 (4)
N—C11.353 (3)C8—H8A0.9300
N—C41.404 (3)C9—C101.373 (3)
N—H0A0.8600C9—H9A0.9300
C1—C21.512 (3)C10—C111.379 (3)
C2—C31.520 (3)C10—H10A0.9300
C2—H2A0.9700C11—H11A0.9300
C2—H2B0.9700C12—C171.389 (3)
C3—C41.515 (3)C12—C131.393 (3)
C3—H3A0.9700C13—C141.385 (3)
C3—H3B0.9700C13—H13A0.9300
C4—C51.341 (3)C14—C151.373 (4)
C5—C121.490 (3)C14—H14A0.9300
C5—C61.492 (3)C15—C161.369 (4)
C6—C71.386 (3)C15—H15A0.9300
C6—C111.393 (3)C16—C171.390 (3)
C7—C81.383 (4)C16—H16A0.9300
C7—H7A0.9300C17—H17A0.9300
C1—N—C4113.85 (18)C9—C8—C7120.8 (2)
C1—N—H0A123.1C9—C8—H8A119.6
C4—N—H0A123.1C7—C8—H8A119.6
O—C1—N125.5 (2)C8—C9—C10118.6 (2)
O—C1—C2126.6 (2)C8—C9—H9A120.7
N—C1—C2107.83 (19)C10—C9—H9A120.7
C1—C2—C3104.76 (19)C9—C10—C11121.1 (2)
C1—C2—H2A110.8C9—C10—H10A119.4
C3—C2—H2A110.8C11—C10—H10A119.4
C1—C2—H2B110.8C10—C11—C6120.9 (2)
C3—C2—H2B110.8C10—C11—H11A119.5
H2A—C2—H2B108.9C6—C11—H11A119.5
C4—C3—C2103.89 (16)C17—C12—C13116.8 (2)
C4—C3—H3A111.0C17—C12—C5119.22 (19)
C2—C3—H3A111.0C13—C12—C5123.9 (2)
C4—C3—H3B111.0C14—C13—C12121.8 (2)
C2—C3—H3B111.0C14—C13—H13A119.1
H3A—C3—H3B109.0C12—C13—H13A119.1
C5—C4—N125.92 (19)C15—C14—C13120.1 (2)
C5—C4—C3128.01 (19)C15—C14—H14A120.0
N—C4—C3106.06 (18)C13—C14—H14A120.0
C4—C5—C12121.04 (19)C16—C15—C14119.5 (2)
C4—C5—C6123.16 (19)C16—C15—H15A120.2
C12—C5—C6115.79 (19)C14—C15—H15A120.2
C7—C6—C11117.2 (2)C15—C16—C17120.5 (2)
C7—C6—C5124.03 (19)C15—C16—H16A119.8
C11—C6—C5118.74 (18)C17—C16—H16A119.8
C8—C7—C6121.3 (2)C12—C17—C16121.3 (2)
C8—C7—H7A119.4C12—C17—H17A119.3
C6—C7—H7A119.4C16—C17—H17A119.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···Oi0.862.112.921 (2)157
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H15NO
Mr249.30
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.135 (2), 7.885 (2), 12.184 (4)
α, β, γ (°)89.76 (3), 75.09 (3), 85.65 (2)
V3)660.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.70 × 0.50 × 0.35
Data collection
DiffractometerAgilent Xcalibur (Sapphire3, Gemini)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.542, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5549, 2999, 1951
Rint0.052
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.225, 1.06
No. of reflections2999
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.26

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···Oi0.862.112.921 (2)156.6
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

We gratefully acknowledge financial support in part from the National Science Council, Taiwan (NSC 99–2119-M-241- 001-MY2). Helpful comments from the reviewers were also greatly appreciated.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAsiri, A. M., Zayed, M. E. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2020.  CSD CrossRef IUCr Journals Google Scholar
First citationEnders, D. & Han, J. (2008). Tetrahedron Asymmetry, 19, 1367–1371.  Web of Science CrossRef CAS Google Scholar
First citationFujihara, H. & Tomioka, K. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 2377–2382.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds