organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Di­methyl-2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No.45-03, Bogotá, Código Postal 111321, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 15 September 2012; accepted 12 October 2012; online 20 October 2012)

The imidazolidine ring in the title compound, C19H24N2O2, adopts a twist conformation and its mean plane (r.m.s. deviation = 0.19 Å) makes dihedral angles of 72.38 (9) and 71.64 (9)° with the two pendant aromatic rings. The dihedral angle between the phenyl rings is 55.94 (8)°. The mol­ecular structure shows the presence of two intra­molecular O—H⋯N hydrogen bonds between the phenolic hydroxyl groups and N atoms with graph-set motif S(6). In the crystal, C—H⋯O hydrogen bonds lead to the formation of chains along the b-axis direction.

Related literature

For the anti-inflammatory and analgesic properties of imidazolidines, see: Sharma & Khan (2001[Sharma, V. & Khan, M. S. Y. (2001). Eur. J. Med. Chem. 36, 651-658.]). For related structures, see: Rivera et al. (2011[Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011). Acta Cryst. E67, o2581.], 2012[Rivera, A., Nerio, L. S., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, o170-o171.]). For the preparation of the title compound, see: Rivera et al. (1993[Rivera, A., Gallo, G. I., Gayón, M. E. & Joseph-Nathan, P. (1993). Synth. Commun. 23, 2921-2929.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H24N2O2

  • Mr = 312.4

  • Monoclinic, P 21 /n

  • a = 11.5029 (4) Å

  • b = 9.5001 (3) Å

  • c = 16.1874 (6) Å

  • β = 107.078 (3)°

  • V = 1690.94 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.63 mm−1

  • T = 120 K

  • 0.25 × 0.22 × 0.13 mm

Data collection
  • Agilent Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.573, Tmax = 1

  • 12982 measured reflections

  • 3007 independent reflections

  • 2648 reflections with I > 3σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.104

  • S = 1.93

  • 3007 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H2⋯N2 0.912 (17) 1.869 (16) 2.6893 (13) 148.6 (16)
O2—H1⋯N1 0.923 (17) 1.825 (15) 2.6807 (12) 153.0 (15)
C17—H1c17⋯O1i 0.96 2.48 3.4286 (14) 168.38
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: Superflip (Palatinus & Chapuis 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dusěk, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

The 1,3-imidazolidine system is intriguing because it is present in biologically active molecules with anti-inflammatory and analgesic properties (Sharma et al., 2001). In our current investigations of factors which influence intramolecular hydrogen bond strength in 1,3-imidazolidine-bridged bis(phenols) (Rivera et al., 2011, 2012), we turn our attention to title compound (I) because the methyl substituent at the para-position in aromatic rings is an electron-donating group which makes the negative charge of hydroxyl group.

The molecular structure and atom-numbering scheme for (I) are shown in Fig. 1 The imidazolidine ring adopts a twist conformation, with twist about the C9—N2 bond; the puckering parameters (Cremer & Pople, 1975), Q2 = 0.4008 (13) Å and ϕ2 = 51.81 (18)°. Intraanular bond lengths (Allen et al., 1987) and angles of (I) are within normal ranges and are comparable to similar structures (Rivera et al., 2011, 2012). The mean plane of imidazolidine ring defined by N1, C15 and C14 makes a dihedral angle of 72.375 (85)° and 71.644 (96)° with the two pendant aromatic rings, C1/C2/C5/C10/C6/C17 and C3/C4/C7/C13/C16/C12 respectively. The dihedral angle between the phenyl rings is 55.938 (83)°. Its X-ray structure confirms the presence of intramolecular hydrogen bonds between the phenolic hydroxyl groups and nitrogen atoms with graph-set motif S(6) (Bernstein et al., 1995) (Table 1). The observed N···O distances [2.6807 (12) Å and 2.6893 (13) Å] and the observed C–O bond lengths [1.3701 (16) Å and 1.3715 (15) Å] are longer in relation to the unsubstituted related structures [2.6557 (13) Å and 1.3654 (15) Å, respectively] (Rivera et al., 2012) and p-chloro derivative [2.6524 (17) Å and 1.366 (2) Å, respectively] (Rivera et al., 2011). This result could indicate that the electro-donating nature of the methyl group at para-position influences the strength of the intra-molecular hydrogen bond.

In the crystal, intermolecular C—H···O hydrogen bonds lead to the formation of chains along the b axis, (Table 1, Fig. 2).

Related literature top

For the anti-inflammatory and analgesic properties of imidazolidines, see: Sharma & Khan (2001). For related structures, see: Rivera et al. (2011, 2012). For the preparation of the title compound, see: Rivera et al. (1993). For standard bond lengths, see: Allen et al. (1987). For ring conformations, see Cremer & Pople (1975). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995).

Experimental top

For the originally reported synthesis, see: Rivera et al. (1993)

Refinement top

The position of hydrogen atoms attached to carbon were fixed in geometrically expected positions, with C—H distance 0.96 Å. On the other hand, positions of H atoms of OH groups were refined without any restrain or constrain. ADP of all hydrogen atoms were fixed as 1.2 multiple of the equivalent isotropic ADP of their parent atom

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: Superflip (Palatinus & Chapuis 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. Packing of the molecules of the title compound view along b axis.
4,4'-Dimethyl-2,2'-[imidazolidine-1,3-diylbis(methylene)]diphenol top
Crystal data top
C19H24N2O2F(000) = 672
Mr = 312.4Dx = 1.227 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ynCell parameters from 8356 reflections
a = 11.5029 (4) Åθ = 4.0–66.9°
b = 9.5001 (3) ŵ = 0.63 mm1
c = 16.1874 (6) ÅT = 120 K
β = 107.078 (3)°Pyramidal shape, white
V = 1690.94 (10) Å30.25 × 0.22 × 0.13 mm
Z = 4
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
3007 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray source2648 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 10.3784 pixels mm-1θmax = 67.1°, θmin = 4.2°
ω scansh = 1312
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1111
Tmin = 0.573, Tmax = 1l = 1918
12982 measured reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
wR(F2) = 0.104(Δ/σ)max = 0.0004
S = 1.93Δρmax = 0.16 e Å3
3007 reflectionsΔρmin = 0.14 e Å3
215 parametersExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 1300 (400)
90 constraints
Crystal data top
C19H24N2O2V = 1690.94 (10) Å3
Mr = 312.4Z = 4
Monoclinic, P21/nCu Kα radiation
a = 11.5029 (4) ŵ = 0.63 mm1
b = 9.5001 (3) ÅT = 120 K
c = 16.1874 (6) Å0.25 × 0.22 × 0.13 mm
β = 107.078 (3)°
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
3007 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2648 reflections with I > 3σ(I)
Tmin = 0.573, Tmax = 1Rint = 0.021
12982 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.93Δρmax = 0.16 e Å3
3007 reflectionsΔρmin = 0.14 e Å3
215 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.88856 (7)0.44965 (9)0.06241 (5)0.0310 (3)
O20.64693 (7)0.76997 (9)0.30769 (6)0.0290 (3)
N10.76722 (9)0.73615 (10)0.13993 (6)0.0266 (3)
N20.84361 (8)0.71755 (10)0.00889 (6)0.0261 (3)
C10.74585 (10)0.70626 (11)0.32261 (7)0.0251 (3)
C20.82536 (10)0.62323 (11)0.25869 (7)0.0243 (3)
C30.76676 (10)0.60644 (12)0.12013 (7)0.0247 (3)
C40.80273 (10)0.47037 (12)0.10465 (7)0.0267 (4)
C50.92398 (10)0.56062 (11)0.27747 (7)0.0245 (3)
C60.86516 (11)0.66039 (12)0.41913 (7)0.0290 (4)
C70.75212 (11)0.35433 (13)0.13319 (8)0.0313 (4)
C81.05237 (11)0.50485 (13)0.37565 (8)0.0305 (4)
C90.72950 (10)0.71770 (12)0.06231 (7)0.0273 (4)
C100.94551 (10)0.57626 (12)0.35724 (7)0.0261 (4)
C110.80246 (10)0.60126 (12)0.17246 (7)0.0256 (4)
C120.67858 (10)0.62103 (12)0.16280 (7)0.0262 (4)
C130.66608 (11)0.37235 (13)0.17686 (8)0.0315 (4)
C140.91127 (11)0.83498 (14)0.01388 (8)0.0336 (4)
C150.87305 (12)0.83398 (13)0.11242 (8)0.0335 (4)
C160.62725 (10)0.50583 (12)0.19224 (7)0.0280 (4)
C170.76650 (11)0.72510 (12)0.40199 (8)0.0283 (4)
C180.82742 (10)0.73307 (12)0.09490 (7)0.0272 (4)
C190.53567 (12)0.52729 (15)0.24135 (9)0.0374 (4)
H1c50.9791860.5046140.2338530.0294*
H1c60.8784060.673670.4744590.0348*
H1c70.7768180.2611830.1226260.0375*
H1c81.0721270.5529790.4219210.0366*
H2c81.1211220.5073330.3247840.0366*
H3c81.0318680.4087910.3919770.0366*
H1c90.6898350.6282760.0645250.0327*
H2c90.6804760.7963610.0558930.0327*
H1c110.7384730.5336160.1786170.0307*
H2c110.8748350.5654760.1316790.0307*
H1c120.6521790.7139030.1722860.0315*
H1c130.6326260.2911540.1969010.0378*
H1c140.9969460.8167740.0079570.0403*
H2c140.8860320.9217090.0060060.0403*
H1c150.8480560.9268620.1336820.0402*
H2c150.9385760.7984440.1319270.0402*
H1c170.7125480.7829640.4451980.034*
H1c180.779670.815530.096030.0327*
H2c180.9051340.7476430.1367570.0327*
H1c190.4804590.6011580.214620.0449*
H2c190.4910520.4416920.2406750.0449*
H3c190.5772220.5526890.3000020.0449*
H10.6668 (13)0.7721 (15)0.2481 (11)0.0348*
H20.8974 (14)0.5333 (17)0.0373 (10)0.0372*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0325 (5)0.0315 (5)0.0289 (4)0.0074 (3)0.0088 (3)0.0025 (3)
O20.0265 (4)0.0304 (5)0.0291 (5)0.0048 (3)0.0066 (3)0.0029 (3)
N10.0280 (5)0.0255 (5)0.0267 (5)0.0009 (4)0.0087 (4)0.0016 (4)
N20.0238 (5)0.0292 (5)0.0253 (5)0.0011 (4)0.0073 (4)0.0005 (4)
C10.0243 (6)0.0208 (5)0.0284 (6)0.0011 (4)0.0050 (4)0.0012 (4)
C20.0246 (5)0.0209 (5)0.0257 (6)0.0031 (4)0.0048 (4)0.0003 (4)
C30.0251 (5)0.0261 (6)0.0203 (5)0.0005 (4)0.0026 (4)0.0016 (4)
C40.0262 (6)0.0287 (6)0.0216 (5)0.0036 (4)0.0016 (4)0.0029 (4)
C50.0243 (5)0.0202 (5)0.0265 (6)0.0012 (4)0.0034 (4)0.0007 (4)
C60.0345 (6)0.0273 (6)0.0248 (6)0.0022 (5)0.0081 (5)0.0005 (4)
C70.0379 (7)0.0239 (6)0.0273 (6)0.0035 (5)0.0023 (5)0.0017 (5)
C80.0311 (6)0.0295 (6)0.0311 (6)0.0002 (5)0.0096 (5)0.0028 (5)
C90.0244 (6)0.0298 (6)0.0276 (6)0.0021 (4)0.0075 (5)0.0014 (4)
C100.0268 (6)0.0224 (5)0.0281 (6)0.0032 (4)0.0065 (4)0.0020 (4)
C110.0246 (5)0.0239 (5)0.0277 (6)0.0007 (4)0.0070 (4)0.0029 (4)
C120.0265 (6)0.0245 (6)0.0260 (5)0.0025 (4)0.0050 (4)0.0004 (4)
C130.0356 (6)0.0263 (6)0.0291 (6)0.0046 (5)0.0041 (5)0.0024 (5)
C140.0305 (6)0.0366 (7)0.0344 (6)0.0081 (5)0.0106 (5)0.0007 (5)
C150.0405 (7)0.0263 (6)0.0341 (7)0.0053 (5)0.0114 (5)0.0014 (5)
C160.0254 (6)0.0292 (6)0.0260 (6)0.0012 (4)0.0025 (5)0.0023 (5)
C170.0315 (6)0.0243 (6)0.0261 (6)0.0006 (4)0.0036 (5)0.0032 (4)
C180.0286 (6)0.0266 (6)0.0268 (6)0.0008 (4)0.0086 (5)0.0036 (4)
C190.0332 (7)0.0377 (7)0.0435 (7)0.0000 (5)0.0147 (6)0.0070 (5)
Geometric parameters (Å, º) top
O1—C41.3701 (16)C8—C101.5084 (18)
O1—H20.912 (17)C8—H1c80.96
O2—C11.3715 (15)C8—H2c80.96
O2—H10.923 (17)C8—H3c80.96
N1—C91.4552 (17)C9—H1c90.96
N1—C111.4863 (15)C9—H2c90.96
N1—C151.4919 (15)C11—H1c110.96
N2—C91.4707 (13)C11—H2c110.96
N2—C141.4678 (17)C12—C161.3924 (17)
N2—C181.4652 (17)C12—H1c120.96
C1—C21.4048 (14)C13—C161.3909 (17)
C1—C171.3852 (18)C13—H1c130.96
C2—C51.3913 (17)C14—C151.5250 (17)
C2—C111.5091 (18)C14—H1c140.96
C3—C41.4022 (16)C14—H2c140.96
C3—C121.3917 (18)C15—H1c150.96
C3—C181.5061 (17)C15—H2c150.96
C4—C71.3876 (18)C16—C191.508 (2)
C5—C101.3923 (18)C17—H1c170.96
C5—H1c50.96C18—H1c180.96
C6—C101.3974 (15)C18—H2c180.96
C6—C171.3884 (18)C19—H1c190.96
C6—H1c60.96C19—H2c190.96
C7—C131.385 (2)C19—H3c190.96
C7—H1c70.96
C4—O1—H2106.8 (11)C6—C10—C8121.43 (11)
C1—O2—H1103.3 (10)N1—C11—C2110.39 (9)
C9—N1—C11112.56 (9)N1—C11—H1c11109.47
C9—N1—C15103.97 (9)N1—C11—H2c11109.47
C11—N1—C15111.06 (9)C2—C11—H1c11109.47
C9—N2—C14102.68 (9)C2—C11—H2c11109.47
C9—N2—C18114.29 (9)H1c11—C11—H2c11108.54
C14—N2—C18112.76 (9)C3—C12—C16122.39 (11)
O2—C1—C2120.83 (11)C3—C12—H1c12118.8
O2—C1—C17118.92 (9)C16—C12—H1c12118.81
C2—C1—C17120.26 (11)C7—C13—C16121.26 (12)
C1—C2—C5118.38 (11)C7—C13—H1c13119.37
C1—C2—C11120.41 (11)C16—C13—H1c13119.37
C5—C2—C11121.20 (9)N2—C14—C15104.28 (9)
C4—C3—C12118.48 (11)N2—C14—H1c14109.47
C4—C3—C18120.22 (11)N2—C14—H2c14109.47
C12—C3—C18121.22 (10)C15—C14—H1c14109.47
O1—C4—C3121.02 (11)C15—C14—H2c14109.47
O1—C4—C7119.10 (11)H1c14—C14—H2c14114.2
C3—C4—C7119.88 (12)N1—C15—C14105.98 (11)
C2—C5—C10122.38 (9)N1—C15—H1c15109.47
C2—C5—H1c5118.81N1—C15—H2c15109.47
C10—C5—H1c5118.81C14—C15—H1c15109.47
C10—C6—C17121.16 (12)C14—C15—H2c15109.47
C10—C6—H1c6119.42H1c15—C15—H2c15112.75
C17—C6—H1c6119.42C12—C16—C13117.69 (12)
C4—C7—C13120.28 (11)C12—C16—C19120.40 (11)
C4—C7—H1c7119.86C13—C16—C19121.88 (12)
C13—C7—H1c7119.86C1—C17—C6120.07 (10)
C10—C8—H1c8109.47C1—C17—H1c17119.97
C10—C8—H2c8109.47C6—C17—H1c17119.97
C10—C8—H3c8109.47N2—C18—C3112.06 (9)
H1c8—C8—H2c8109.47N2—C18—H1c18109.47
H1c8—C8—H3c8109.47N2—C18—H2c18109.47
H2c8—C8—H3c8109.47C3—C18—H1c18109.47
N1—C9—N2104.65 (9)C3—C18—H2c18109.47
N1—C9—H1c9109.47H1c18—C18—H2c18106.76
N1—C9—H2c9109.47C16—C19—H1c19109.47
N2—C9—H1c9109.47C16—C19—H2c19109.47
N2—C9—H2c9109.47C16—C19—H3c19109.47
H1c9—C9—H2c9113.89H1c19—C19—H2c19109.47
C5—C10—C6117.74 (11)H1c19—C19—H3c19109.47
C5—C10—C8120.83 (9)H2c19—C19—H3c19109.47
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H2···N20.912 (17)1.869 (16)2.6893 (13)148.6 (16)
O2—H1···N10.923 (17)1.825 (15)2.6807 (12)153.0 (15)
C17—H1c17···O1i0.962.483.4286 (14)168.38
Symmetry code: (i) x+3/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H24N2O2
Mr312.4
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)11.5029 (4), 9.5001 (3), 16.1874 (6)
β (°) 107.078 (3)
V3)1690.94 (10)
Z4
Radiation typeCu Kα
µ (mm1)0.63
Crystal size (mm)0.25 × 0.22 × 0.13
Data collection
DiffractometerAgilent Xcalibur Atlas Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.573, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
12982, 3007, 2648
Rint0.021
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.104, 1.93
No. of reflections3007
No. of parameters215
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.14

Computer programs: CrysAlis PRO (Agilent, 2010), Superflip (Palatinus & Chapuis 2007), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H2···N20.912 (17)1.869 (16)2.6893 (13)148.6 (16)
O2—H1···N10.923 (17)1.825 (15)2.6807 (12)153.0 (15)
C17—H1c17···O1i0.962.483.4286 (14)168.38
Symmetry code: (i) x+3/2, y+1/2, z1/2.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work as well as the Praemium Academiae project of the Academy of Sciences of the Czech Republic. LSN thanks COLCIENCIAS for a fellowship.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetříček, V., Dusěk, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationRivera, A., Gallo, G. I., Gayón, M. E. & Joseph-Nathan, P. (1993). Synth. Commun. 23, 2921–2929.  CrossRef CAS Web of Science Google Scholar
First citationRivera, A., Nerio, L. S., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, o170–o171.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRivera, A., Sadat-Bernal, J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011). Acta Cryst. E67, o2581.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSharma, V. & Khan, M. S. Y. (2001). Eur. J. Med. Chem. 36, 651–658.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds