organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-2-(thio­phen-2-yl)-1-(thio­phen-2-ylmeth­yl)-1H-benzimidazole

aDepartment of Chemistry, State University of New York-College at Geneseo, 1 College Circle, Geneseo, NY 14454, USA
*Correspondence e-mail: geiger@geneseo.edu

(Received 27 September 2012; accepted 8 October 2012; online 13 October 2012)

There are two independent mol­ecules in the asymmetric unit of the title compound, C16H11BrN2S2. In the crystal, weak C—H⋯N hydrogen bonds and C—H⋯thio­phene ring inter­actions link the mol­ecules into chains along [100]. The structure exhibits disorder of the 2-thio­phen-2-yl substituent of one of the symmetry-unique mol­ecules with a major:minor component ratio of 0.914 (3):0.086 (3).

Related literature

For the characterization of 2-(thio­phen-2-yl)-1-(thio­phen-2-ylmeth­yl)-1H-benzimidazole, see: Geiger et al. (2012[Geiger, D. K., Geiger, H. C., Williams, L. & Noll, B. C. (2012). Acta Cryst. E68, o420.]). For examples of pharmacological uses of benzimidazoles, see: López-Rodríguez et al. (1999[López-Rodríguez, M. L., Benhamú, B., Morcillo, M. J., Tejeda, I. D., Orensanz, L., Alfaro, M. J. & Martín, M. I. (1999). J. Med. Chem. 42, 5020-5028.]); Varala et al. (2007[Varala, R., Nasreen, A., Enugala, R. & Adapa, S. R. (2007). Tetrahedron Lett. 48, 69-72.]); Horton et al. (2003[Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.]). For the synthesis of substituted benzimidazoles, see: Grimmett (1997[Grimmett, M. R. (1997). Imidazole and Benzidmidazole Synthesis. San Diego: Academic Press.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11BrN2S2

  • Mr = 375.30

  • Monoclinic, P 21 /n

  • a = 12.6753 (17) Å

  • b = 10.5413 (11) Å

  • c = 23.581 (3) Å

  • β = 100.878 (4)°

  • V = 3094.1 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.92 mm−1

  • T = 200 K

  • 0.60 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART X2S benchtop diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.46, Tmax = 0.76

  • 19813 measured reflections

  • 5581 independent reflections

  • 4191 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.091

  • S = 1.02

  • 5581 reflections

  • 392 parameters

  • 91 restraints

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of the S2,C13–C16 and S4,C29–C32 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12i—H12Bi⋯N4 0.99 2.57 3.454 (4) 149
C22—H22⋯N2 0.95 2.61 3.504 (4) 158
C28—H28A⋯N2 0.99 2.61 3.522 (4) 152
C6i—H6i⋯N4 0.95 2.65 3.547 (4) 157
C3—H3⋯Cg4 0.95 2.68 3.578 (4) 158
C19—H19⋯Cg2i 0.95 2.62 3.512 (4) 157
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: XSHELL (Bruker, 2004[Bruker (2004). XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzimidazole derivatives have a myriad of pharmacological uses, including as inhibitors of serotonin activated neurotransmission (López-Rodríguez et al., 1999) and antiviral agents (Varala et al., 2007). They are also in antiarrhythmic, antihistamine, antiulcer, anticancer, fungicidal, and anthelmintical drugs (Horton et al., 2003).

Numerous methods are available for the synthesis of substituted benzimidazoles (Grimmett, 1997). Our efforts have focused on the preparation of benzimidazole analogues which have substituents capable of binding metals. Toward that end, we have prepared the title compound from a reaction of 1,2-diamino-4-bromobenzene with 2-thiophenecarboxaldehyde. The 5-bromo and 6-bromo substituted benzimidazoles are formed in an approximately 3:2 ratio based on 1H NMR spectral data. However, only the 5-bromo isomer forms single crystals under the crystallization conditions employed.

Figure 1 shows a perspective view of the two molecules in the asymmetric unit with the atom-labeling scheme. The molecules exhibit the expected planar benzimidazole moieties with maximum deviations of 0.030 (3) Å (C5) and 0.026 (2) Å (C21) in molecules 1 and 2, respectively. The thiophene rings display maximum deviations from planarity of 0.0004 (23) Å (C10 and C11), 0.005 (2) Å (C16), 0.005 (4) Å (C24), and 0.007 (2) Å (C29).

Figure 2 shows the unit cell as viewed down the a axis. Chains of molecules are held together via weak C—H···N and CH···thiophene ring interactions. The motif is shown in Figure 3. The H19···Cg2 and H3···Cg4, where Cgn refers to the centroid of the thiophene ring containing the sulfur labeled Sn, are 2.62 Å and 2.68 Å, respectively. H19 is 2.618 (3) Å from the thiophene mean plane and H3 is 2.673 (3) Å from the thiophene mean plane.

Related literature top

For the characterization of 2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzimidazole, see: Geiger et al. (2012). For examples of pharmacological uses of benzimdazoles, see: López-Rodríguez et al. (1999); Varala et al. (2007); Horton et al. (2003). For the synthesis of substituted benzimidazoles, see: Grimmett (1997).

Experimental top

An approximately equimolar mixture of the 5-bromo and 6-bromo derivatives of the 1,2-disubstituted benzimidazole was prepared by reaction of 500 mg 1,2-diamino-4-bromobenzenene and 0.50 ml 2-thiophenecarboxaldehyde in refluxing dichloromethane (8 ml) in the presence of a catalytic amount of aluminium trichloride for eight hours. After removal of insoluble inorganic material, the solvent was removed by rotary evaporation leaving a brown, tarry substance. The mixture was subjected to column chromatography on silica gel using a 1:4 ethylacetate:hexanes eluent. A light yellow fraction was collected. Based on the presence of two CH2 resonances in the 1H NMR spectrum, the 5-Br and 6-Br isomers were present in a 3:2 ratio.

Slow evaporation of a 1:4 ethylacetate:hexanes solution at 40°C yielded single crystals of the title compound suitable for X-ray diffraction. A 1H NMR spectrum of a solution of single crystals showed that only the 5-Br isomer was present. 1H NMR spectrum (CDCl3, 400 MHz, p.p.m.): 7.93 (1H, s), 7.54 (1H, m), 7.48 (1H, m), 7.36 (1H, m), 7.23 (2H, m), 7.15 (1H, m), 6.85 (1H, bs), 5.68 (2H, s).

Refinement top

The H atoms were refined using a riding model with a C—H distance of 0.99 Å for the methylene carbon atoms and 0.95 Å for the phenyl and thiophene carbon atoms. The H atom thermal parameters were set using the approximation Uiso = 1.2Ueq(C).

During the later stages of refinement, the thiophene ring containing S3 was found to be rotationally disordered. The disorder was resolved using the metrics of the major component to establish coordinates of the minor component. The major:minor site occupancies refined to 0.914 (3):0.086 (3).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: XSHELL (Bruker, 2004) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound showing both molecules in the asymmetric unit. Displacement ellipsoids of the nonhydrogen atoms are drawn a at the 50% probability level. Only the major component of the disordered thiophene is shown.
[Figure 2] Fig. 2. The unit cell of the title compound viewed down the a axis. Hydrogen atoms have been omitted for clarity. Only the major component of the disordered thiophene substituent is shown.
[Figure 3] Fig. 3. Perspective drawing showing the close intermolecular contacts forming chains parallel to the a axis. Only the major component of the disordered thiophene substituent is shown.
5-Bromo-2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzimidazole top
Crystal data top
C16H11BrN2S2F(000) = 1504
Mr = 375.30Dx = 1.611 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.6753 (17) ÅCell parameters from 6104 reflections
b = 10.5413 (11) Åθ = 2.5–24.4°
c = 23.581 (3) ŵ = 2.92 mm1
β = 100.878 (4)°T = 200 K
V = 3094.1 (6) Å3Plate, colourless
Z = 80.60 × 0.20 × 0.10 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
5581 independent reflections
Radiation source: XOS X-beam microfocus source4191 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.059
Detector resolution: 8.3330 pixels mm-1θmax = 25.4°, θmin = 2.1°
ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
k = 1212
Tmin = 0.46, Tmax = 0.76l = 2824
19813 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.036P)2 + 0.884P]
where P = (Fo2 + 2Fc2)/3
5581 reflections(Δ/σ)max = 0.001
392 parametersΔρmax = 0.65 e Å3
91 restraintsΔρmin = 0.80 e Å3
Crystal data top
C16H11BrN2S2V = 3094.1 (6) Å3
Mr = 375.30Z = 8
Monoclinic, P21/nMo Kα radiation
a = 12.6753 (17) ŵ = 2.92 mm1
b = 10.5413 (11) ÅT = 200 K
c = 23.581 (3) Å0.60 × 0.20 × 0.10 mm
β = 100.878 (4)°
Data collection top
Bruker SMART X2S benchtop
diffractometer
5581 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
4191 reflections with I > 2σ(I)
Tmin = 0.46, Tmax = 0.76Rint = 0.059
19813 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03891 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.02Δρmax = 0.65 e Å3
5581 reflectionsΔρmin = 0.80 e Å3
392 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.75134 (3)1.11709 (4)0.458735 (16)0.05101 (14)
Br20.11272 (3)1.13960 (3)0.03496 (14)0.03685 (12)
S10.41783 (7)0.73442 (9)0.17228 (4)0.0370 (2)
S20.81366 (8)1.15655 (8)0.16253 (4)0.0354 (2)
S30.03440 (10)0.73244 (14)0.31444 (5)0.0301 (3)0.914 (3)
C240.0711 (5)0.8382 (6)0.32690 (16)0.0225 (9)0.914 (3)
C250.1030 (6)0.8601 (8)0.3841 (3)0.0350 (16)0.914 (3)
H250.15970.91640.39940.042*0.914 (3)
C260.0435 (4)0.7907 (4)0.41889 (18)0.0348 (12)0.914 (3)
H260.05580.7950.45980.042*0.914 (3)
C270.0325 (4)0.7179 (4)0.38673 (17)0.0331 (11)0.914 (3)
H270.07980.66430.40260.04*0.914 (3)
S3000.118 (2)0.872 (3)0.3950 (10)0.0301 (3)0.086 (3)
C2400.062 (5)0.846 (7)0.3243 (10)0.0225 (9)0.086 (3)
C2500.013 (4)0.753 (6)0.3166 (15)0.0350 (16)0.086 (3)
H2500.05040.72530.28010.042*0.086 (3)
C2600.028 (4)0.702 (5)0.3704 (17)0.0348 (12)0.086 (3)
H2600.080.63980.37410.042*0.086 (3)
C2700.041 (5)0.753 (5)0.4156 (15)0.0331 (11)0.086 (3)
H2700.04540.72550.45440.04*0.086 (3)
S40.36606 (8)1.15559 (8)0.33291 (4)0.0359 (2)
C290.3469 (2)1.0042 (3)0.35642 (13)0.0243 (7)
C300.37895 (19)0.9943 (2)0.41524 (11)0.0290 (8)
H300.37590.91790.43630.035*
C310.41740 (19)1.1124 (2)0.44115 (11)0.0372 (9)
H310.44221.12380.48140.045*
C320.4144 (3)1.2058 (3)0.40164 (15)0.0383 (9)
H320.43671.29050.41110.046*
N10.6914 (2)0.9247 (2)0.21670 (11)0.0237 (6)
N20.5457 (2)0.9232 (3)0.25919 (11)0.0259 (6)
N30.2090 (2)0.9262 (2)0.27375 (11)0.0232 (6)
N40.0354 (2)0.9291 (2)0.22968 (11)0.0233 (6)
C10.7240 (2)0.9759 (3)0.27135 (13)0.0222 (7)
C20.6323 (2)0.9745 (3)0.29708 (13)0.0225 (7)
C30.6388 (3)1.0186 (3)0.35289 (14)0.0272 (8)
H30.57771.02080.37080.033*
C40.7381 (3)1.0590 (3)0.38108 (13)0.0279 (8)
C50.8299 (3)1.0590 (3)0.35640 (14)0.0275 (8)
H50.89671.08640.37830.033*
C60.8232 (2)1.0189 (3)0.30016 (14)0.0252 (7)
H60.88391.02080.28190.03*
C70.5840 (3)0.8946 (3)0.21240 (14)0.0241 (7)
C80.5183 (2)0.8366 (3)0.16143 (14)0.0266 (7)
C90.5175 (3)0.8543 (3)0.10299 (15)0.0317 (8)
H90.56640.90710.0880.038*
C100.4344 (3)0.7835 (4)0.06878 (16)0.0420 (10)
H100.42130.78380.02780.05*
C110.3754 (3)0.7156 (3)0.09998 (16)0.0399 (9)
H110.31680.66310.08340.048*
C120.7635 (3)0.8988 (3)0.17647 (13)0.0252 (7)
H12A0.73610.8240.15280.03*
H12B0.83520.87660.1990.03*
C130.7760 (2)1.0068 (3)0.13666 (14)0.0260 (8)
C140.7663 (3)1.0014 (3)0.07791 (14)0.0310 (8)
H140.74660.92710.05570.037*
C150.7891 (3)1.1198 (3)0.05394 (16)0.0369 (9)
H150.78661.13290.01390.044*
C160.8147 (3)1.2113 (4)0.09412 (17)0.0408 (10)
H160.83141.29620.08550.049*
C170.2065 (2)0.9796 (3)0.21996 (13)0.0228 (7)
C180.0977 (2)0.9815 (3)0.19334 (13)0.0230 (7)
C190.0678 (3)1.0299 (3)0.13786 (14)0.0251 (7)
H190.00531.03410.11910.03*
C200.1492 (3)1.0714 (3)0.11131 (13)0.0262 (7)
C210.2576 (3)1.0675 (3)0.13697 (14)0.0283 (8)
H210.31041.09560.11610.034*
C220.2882 (3)1.0226 (3)0.19272 (14)0.0273 (8)
H220.36141.02110.21150.033*
C230.1038 (2)0.8981 (3)0.27693 (14)0.0226 (7)
C280.3078 (2)0.8977 (3)0.31505 (13)0.0244 (7)
H28A0.3650.87630.29330.029*
H28B0.29520.82180.33760.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0473 (3)0.0758 (3)0.0317 (2)0.0111 (2)0.01178 (18)0.0179 (2)
Br20.0475 (2)0.0365 (2)0.02852 (19)0.00007 (17)0.01243 (17)0.00434 (16)
S10.0262 (5)0.0372 (6)0.0474 (6)0.0087 (4)0.0061 (4)0.0036 (4)
S20.0361 (5)0.0294 (5)0.0426 (5)0.0005 (4)0.0121 (4)0.0066 (4)
S30.0251 (7)0.0301 (8)0.0354 (6)0.0096 (4)0.0067 (4)0.0013 (4)
C240.016 (2)0.021 (2)0.0304 (17)0.0001 (16)0.0044 (14)0.0012 (14)
C250.027 (4)0.044 (4)0.035 (3)0.012 (2)0.008 (3)0.000 (3)
C260.035 (2)0.040 (3)0.030 (2)0.009 (2)0.0067 (17)0.0000 (19)
C270.027 (2)0.039 (3)0.035 (2)0.0082 (19)0.011 (2)0.007 (2)
S3000.0251 (7)0.0301 (8)0.0354 (6)0.0096 (4)0.0067 (4)0.0013 (4)
C2400.016 (2)0.021 (2)0.0304 (17)0.0001 (16)0.0044 (14)0.0012 (14)
C2500.027 (4)0.044 (4)0.035 (3)0.012 (2)0.008 (3)0.000 (3)
C2600.035 (2)0.040 (3)0.030 (2)0.009 (2)0.0067 (17)0.0000 (19)
C2700.027 (2)0.039 (3)0.035 (2)0.0082 (19)0.011 (2)0.007 (2)
S40.0356 (5)0.0281 (5)0.0425 (5)0.0021 (4)0.0030 (4)0.0085 (4)
C290.0116 (16)0.0272 (19)0.0346 (18)0.0006 (13)0.0053 (14)0.0074 (15)
C300.0213 (18)0.027 (2)0.039 (2)0.0034 (15)0.0060 (15)0.0092 (16)
C310.031 (2)0.039 (2)0.038 (2)0.0003 (17)0.0014 (17)0.0018 (18)
C320.036 (2)0.030 (2)0.046 (2)0.0029 (17)0.0019 (18)0.0006 (18)
N10.0152 (14)0.0286 (15)0.0279 (14)0.0007 (12)0.0058 (11)0.0034 (12)
N20.0166 (15)0.0289 (16)0.0322 (15)0.0000 (12)0.0050 (12)0.0014 (12)
N30.0155 (14)0.0252 (15)0.0297 (14)0.0007 (11)0.0061 (11)0.0038 (12)
N40.0148 (14)0.0265 (15)0.0292 (14)0.0007 (11)0.0061 (12)0.0019 (12)
C10.0171 (16)0.0238 (18)0.0266 (17)0.0030 (14)0.0067 (14)0.0006 (14)
C20.0165 (17)0.0208 (18)0.0302 (17)0.0008 (14)0.0045 (14)0.0024 (14)
C30.0212 (18)0.0292 (19)0.0333 (18)0.0021 (14)0.0107 (15)0.0007 (15)
C40.030 (2)0.029 (2)0.0252 (17)0.0014 (15)0.0072 (15)0.0043 (15)
C50.0208 (18)0.0253 (19)0.0352 (19)0.0024 (14)0.0020 (15)0.0021 (15)
C60.0151 (16)0.0267 (19)0.0348 (18)0.0023 (14)0.0074 (14)0.0028 (15)
C70.0183 (17)0.0214 (18)0.0325 (18)0.0005 (14)0.0044 (14)0.0006 (14)
C80.0178 (17)0.0275 (19)0.0335 (18)0.0000 (14)0.0026 (14)0.0014 (15)
C90.0187 (18)0.034 (2)0.040 (2)0.0031 (15)0.0003 (15)0.0033 (16)
C100.034 (2)0.053 (3)0.037 (2)0.0028 (19)0.0003 (18)0.0079 (19)
C110.025 (2)0.042 (2)0.050 (2)0.0056 (17)0.0014 (17)0.0116 (19)
C120.0171 (17)0.0298 (19)0.0306 (18)0.0018 (14)0.0093 (14)0.0056 (15)
C130.0165 (17)0.0286 (19)0.0343 (19)0.0028 (14)0.0085 (15)0.0044 (15)
C140.0251 (19)0.033 (2)0.0362 (19)0.0008 (15)0.0101 (15)0.0055 (16)
C150.034 (2)0.044 (2)0.034 (2)0.0089 (17)0.0108 (17)0.0057 (18)
C160.039 (2)0.032 (2)0.056 (2)0.0057 (18)0.0203 (19)0.007 (2)
C170.0191 (17)0.0190 (17)0.0311 (17)0.0001 (13)0.0067 (14)0.0001 (14)
C180.0173 (17)0.0217 (18)0.0314 (18)0.0012 (14)0.0081 (14)0.0014 (14)
C190.0192 (17)0.0238 (18)0.0338 (18)0.0019 (14)0.0090 (14)0.0020 (15)
C200.032 (2)0.0222 (18)0.0269 (17)0.0025 (15)0.0111 (15)0.0013 (14)
C210.0270 (19)0.0242 (19)0.0378 (19)0.0022 (15)0.0167 (16)0.0000 (16)
C220.0184 (17)0.0248 (19)0.0404 (19)0.0018 (14)0.0099 (15)0.0005 (16)
C230.0169 (16)0.0198 (18)0.0325 (18)0.0020 (13)0.0085 (14)0.0005 (14)
C280.0171 (17)0.0234 (18)0.0327 (18)0.0005 (14)0.0047 (14)0.0066 (14)
Geometric parameters (Å, º) top
Br1—C41.908 (3)N3—C281.465 (4)
Br2—C201.912 (3)N4—C231.317 (4)
S1—C111.700 (4)N4—C181.384 (4)
S1—C81.723 (3)C1—C61.387 (4)
S2—C161.716 (4)C1—C21.409 (4)
S2—C131.727 (3)C2—C31.384 (4)
S3—C271.707 (4)C3—C41.376 (4)
S3—C241.723 (4)C3—H30.95
C24—C251.352 (6)C4—C51.396 (4)
C24—C231.464 (4)C5—C61.379 (4)
C25—C261.417 (7)C5—H50.95
C25—H250.95C6—H60.95
C26—C271.348 (5)C7—C81.461 (4)
C26—H260.95C8—C91.389 (5)
C27—H270.95C9—C101.412 (5)
S300—C2401.707 (17)C9—H90.95
S300—C2701.721 (17)C10—C111.349 (5)
C240—C2501.353 (17)C10—H100.95
C240—C231.430 (17)C11—H110.95
C250—C2601.422 (17)C12—C131.503 (4)
C250—H2500.95C12—H12A0.99
C260—C2701.349 (16)C12—H12B0.99
C260—H2600.95C13—C141.369 (4)
C270—H2700.95C14—C151.422 (5)
S4—C321.705 (4)C14—H140.95
S4—C291.722 (3)C15—C161.348 (5)
C29—C301.374 (4)C15—H150.95
C29—C281.509 (4)C16—H160.95
C30—C311.4313C17—C221.393 (4)
C30—H300.95C17—C181.404 (4)
C31—C321.351 (4)C18—C191.388 (4)
C31—H310.95C19—C201.375 (4)
C32—H320.95C19—H190.95
N1—C71.383 (4)C20—C211.393 (4)
N1—C11.386 (4)C21—C221.382 (4)
N1—C121.461 (4)C21—H210.95
N2—C71.321 (4)C22—H220.95
N2—C21.387 (4)C28—H28A0.99
N3—C231.383 (4)C28—H28B0.99
N3—C171.383 (4)
C11—S1—C891.52 (17)C5—C6—H6121.4
C16—S2—C1391.50 (17)C1—C6—H6121.4
C27—S3—C2491.35 (18)N2—C7—N1113.4 (3)
C25—C24—C23130.8 (5)N2—C7—C8122.7 (3)
C25—C24—S3110.9 (4)N1—C7—C8123.8 (3)
C23—C24—S3118.0 (3)C9—C8—C7131.0 (3)
C24—C25—C26113.5 (5)C9—C8—S1111.3 (2)
C24—C25—H25123.3C7—C8—S1117.5 (2)
C26—C25—H25123.3C8—C9—C10111.2 (3)
C27—C26—C25111.7 (4)C8—C9—H9124.4
C27—C26—H26124.2C10—C9—H9124.4
C25—C26—H26124.2C11—C10—C9113.5 (3)
C26—C27—S3112.6 (3)C11—C10—H10123.2
C26—C27—H27123.7C9—C10—H10123.2
S3—C27—H27123.7C10—C11—S1112.5 (3)
C240—S300—C27090.3 (11)C10—C11—H11123.8
C250—C240—C23122 (3)S1—C11—H11123.8
C250—C240—S300113.4 (14)N1—C12—C13114.7 (3)
C23—C240—S300124 (2)N1—C12—H12A108.6
C240—C250—C260111.3 (17)C13—C12—H12A108.6
C240—C250—H250124.3N1—C12—H12B108.6
C260—C250—H250124.3C13—C12—H12B108.6
C270—C260—C250112.5 (18)H12A—C12—H12B107.6
C270—C260—H260123.8C14—C13—C12127.0 (3)
C250—C260—H260123.8C14—C13—S2111.2 (3)
C260—C270—S300112.3 (16)C12—C13—S2121.8 (2)
C260—C270—H270123.8C13—C14—C15112.3 (3)
S300—C270—H270123.8C13—C14—H14123.8
C32—S4—C2991.66 (16)C15—C14—H14123.8
C30—C29—C28126.5 (3)C16—C15—C14112.9 (3)
C30—C29—S4111.3 (2)C16—C15—H15123.6
C28—C29—S4122.1 (2)C14—C15—H15123.6
C29—C30—C31112.13 (16)C15—C16—S2112.1 (3)
C29—C30—H30123.9C15—C16—H16123.9
C31—C30—H30123.9S2—C16—H16123.9
C32—C31—C30112.13 (19)N3—C17—C22131.7 (3)
C32—C31—H31123.9N3—C17—C18105.5 (3)
C30—C31—H31123.9C22—C17—C18122.9 (3)
C31—C32—S4112.8 (3)N4—C18—C19130.1 (3)
C31—C32—H32123.6N4—C18—C17110.1 (3)
S4—C32—H32123.6C19—C18—C17119.7 (3)
C7—N1—C1105.9 (2)C20—C19—C18116.9 (3)
C7—N1—C12129.5 (3)C20—C19—H19121.6
C1—N1—C12124.3 (3)C18—C19—H19121.6
C7—N2—C2104.9 (3)C19—C20—C21123.7 (3)
C23—N3—C17106.4 (2)C19—C20—Br2118.7 (3)
C23—N3—C28129.2 (3)C21—C20—Br2117.6 (2)
C17—N3—C28124.2 (3)C22—C21—C20120.0 (3)
C23—N4—C18105.2 (3)C22—C21—H21120.0
N1—C1—C6131.8 (3)C20—C21—H21120.0
N1—C1—C2105.7 (3)C21—C22—C17116.7 (3)
C6—C1—C2122.5 (3)C21—C22—H22121.6
C3—C2—N2129.9 (3)C17—C22—H22121.6
C3—C2—C1120.0 (3)N4—C23—N3112.8 (3)
N2—C2—C1110.1 (3)N4—C23—C240118 (2)
C4—C3—C2116.6 (3)N3—C23—C240129 (2)
C4—C3—H3121.7N4—C23—C24123.2 (3)
C2—C3—H3121.7N3—C23—C24124.0 (3)
C3—C4—C5123.9 (3)C240—C23—C246 (3)
C3—C4—Br1118.0 (2)N3—C28—C29114.4 (3)
C5—C4—Br1118.1 (2)N3—C28—H28A108.7
C6—C5—C4119.8 (3)C29—C28—H28A108.7
C6—C5—H5120.1N3—C28—H28B108.7
C4—C5—H5120.1C29—C28—H28B108.7
C5—C6—C1117.2 (3)H28A—C28—H28B107.6
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the S2,C13–C16 and S4,C29–C32 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12i—H12Bi···N40.992.573.454 (4)149
C22—H22···N20.952.613.504 (4)158
C28—H28A···N20.992.613.522 (4)152
C6i—H6i···N40.952.653.547 (4)157
C3—H3···Cg40.952.683.578 (4)158
C19—H19···Cg2i0.952.623.512 (4)157
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H11BrN2S2
Mr375.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)12.6753 (17), 10.5413 (11), 23.581 (3)
β (°) 100.878 (4)
V3)3094.1 (6)
Z8
Radiation typeMo Kα
µ (mm1)2.92
Crystal size (mm)0.60 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART X2S benchtop
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.46, 0.76
No. of measured, independent and
observed [I > 2σ(I)] reflections
19813, 5581, 4191
Rint0.059
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.091, 1.02
No. of reflections5581
No. of parameters392
No. of restraints91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.80

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), XSHELL (Bruker, 2004) and Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the S2,C13–C16 and S4,C29–C32 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12i—H12Bi···N40.992.573.454 (4)149
C22—H22···N20.952.613.504 (4)158
C28—H28A···N20.992.613.522 (4)152
C6i—H6i···N40.952.653.547 (4)157
C3—H3···Cg40.952.683.578 (4)158
C19—H19···Cg2i0.952.623.512 (4)157
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by a Congressionally directed grant from the US Department of Education (grant No. P116Z100020) for the X-ray diffractometer and a grant from the Geneseo Foundation.

References

First citationBruker (2004). XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGeiger, D. K., Geiger, H. C., Williams, L. & Noll, B. C. (2012). Acta Cryst. E68, o420.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGrimmett, M. R. (1997). Imidazole and Benzidmidazole Synthesis. San Diego: Academic Press.  Google Scholar
First citationHorton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLópez-Rodríguez, M. L., Benhamú, B., Morcillo, M. J., Tejeda, I. D., Orensanz, L., Alfaro, M. J. & Martín, M. I. (1999). J. Med. Chem. 42, 5020–5028.  Web of Science PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarala, R., Nasreen, A., Enugala, R. & Adapa, S. R. (2007). Tetrahedron Lett. 48, 69–72.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds