organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3128-o3129

5-(4-Hexyl-1H-1,2,3-triazol-1-yl)-2,1,3-benzoxa­diazole

aAlberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada, and bX-ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
*Correspondence e-mail: michael.ferguson@ualberta.ca

(Received 10 August 2012; accepted 5 October 2012; online 13 October 2012)

The title compound, C14H17N5O, a 1,2,3-triazole derivative of benzoxadiazole (C14H17N5O), was synthesized via Cu-catal­ysed azide–alkyne cyclo­addition (CuAAC) from the corres­ponding n-octyne and 4-azido­benzoxadiazole. The benz­oxa­diazole and triazole rings show a roughly planar orientation [dihedral angle between the ring planes = 12.18 (5)°]. The alkane chain adopts a zigzag conformation, which deviates from the central triazole ring by 20.89 (6)°. These two torsion angles result in an overall twist to the structure, with a dihedral angle of 32.86 (7)° between the benzoxadiazole group and the hexyl chain. The crystal structure features C—H⋯N hydrogen bonds leading to chains propagating along [2-10] and offset parallel stacking inter­actions of the triazole and benzoxadiazole rings. The centroid of the extended π-system formed by the benzoxadiazole and triazole rings (14 atoms total) was calculated; the centroid–centroid distance was 4.179 Å, interplanar separation was 3.243 Å, and the resulting offset was 2.636 Å.

Related literature

For the synthesis of the title compound and related benz­oxa­diazole analogs, see: Key & Cairo (2011[Key, J. A. & Cairo, C. W. (2011). Dyes Pigm. 88, 95-102.]). For computational studies of the absorption and fluorescence properties of this series of compounds, see: Brown et al. (2012[Brown, A., Ngai, T. Y., Key, J. A. & Cairo, C. W. (2012). J. Phys. Chem. A, 116, 46-54.]). For structures with 1-aryl-substituted 1,2,3-triazole rings, see: Costa et al. (2006[Costa, M. S., Boechat, N., Ferreira, V. F., Wardell, S. M. S. V. & Skakle, J. M. S. (2006). Acta Cryst. E62, o2048-o2050.]). For the use of fluoro­phores as chemical or biological probes, see: Cairo et al. (2010[Cairo, C. W., Key, J. A. & Sadek, C. M. (2010). Curr. Opin. Chem. Biol. 14, 57-63.]); Lavis & Raines (2008[Lavis, L. D. & Raines, R. T. (2008). ACS Chem. Biol. 3, 142-155.]). For related benzoxadiazole structures, see: Key et al. (2012a[Key, J. A., Cairo, C. W. & McDonald, R. (2012a). Acta Cryst. E68, o3130-o3131.],b[Key, J. A., Cairo, C. W. & McDonald, R. (2012b). Acta Cryst. E68, o3132.]). For triazole-substituted coumarin derivatives, see: Key et al. (2009[Key, J. A., Koh, S., Timerghazin, Q. K., Brown, A. & Cairo, C. W. (2009). Dyes Pigm. 82, 196-203.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17N5O

  • Mr = 271.33

  • Triclinic, [P \overline 1]

  • a = 5.3604 (8) Å

  • b = 7.8585 (11) Å

  • c = 16.357 (2) Å

  • α = 87.4656 (17)°

  • β = 86.2519 (16)°

  • γ = 85.6240 (17)°

  • V = 685.04 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 1.02 × 0.35 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.915, Tmax = 0.997

  • 6114 measured reflections

  • 3120 independent reflections

  • 2568 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.099

  • S = 1.04

  • 3120 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N2i 0.95 2.52 3.4674 (15) 177
C5—H5⋯N4ii 0.95 2.46 3.3445 (15) 154
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x-1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXD (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Fluorophores with properties responsive to their chemical environment, or which are reactive to the presence of specific functional groups, can be useful probes in chemistry and biology (Cairo et al., 2010; Lavis & Raines, 2008). We explored a series of analogs suitable for the Cu-catalyzed azide-alkyne cycloaddition (CuAAC) to identify substrates which were fluorogenic. Compounds with increased fluorescence upon conversion from either an azide or alkyne precursor to a triazole product would be of interest for detecting the presence of these functional groups in complex mixtures. The title compound, I, was found to be only weakly fluorescent, which is in contrast to the properties of the 4-azido-benzoxadiazole precursor, II. Thus, we designated compound I as a quenched fluorophore (Key & Cairo, 2011).

The benzoxadiazole and triazole rings of I are nearly eclipsed, as noted from the dihedral angle of 12.18 (5)° that was obtained from least-squares planes calculations. The hexyl side-chain adopted an essentially planar zigzag conformation [maximum deviation from the plane 0.0530 (8) Å]; the alkyl chain was twisted 20.89 (6)° with respect to the central triazole. There was an overall twist to the structure, with an angle of 32.86 (7)° between the benzoxadiazole group and the hexyl chain.

The packing of I in the solid state was stabilized by weak intermolecular C–H···N hydrogen bonds (H···N distances: 2.46-2.52 Å) and offset parallel stacking interactions (3.331-3.791 Å) of the triazole and benzoxadiazole rings (see Figures 3 and 4).

Related literature top

For the synthesis of the title compound and related benzoxadiazole analogs, see: Key & Cairo (2011). For computational studies of the absorption and fluorescence properties of this series of compounds, see: Brown et al. (2012). For structures with 1-aryl-substituted 1,2,3-triazole rings, see: Costa et al. (2006). For the use of fluorophores as chemical or biological probes, see: Cairo et al. (2010); Lavis & Raines (2008). For related benzoxadiazole structures, see: Key et al. (2012a,b). For triazole-substituted coumarin derivatives, see: Key et al. (2009).

Experimental top

4-Azidobenzoxadiazole (30 mg, 0.19 mmol, 1 equiv) was dissolved in 1:1 water/methanol (5 mL), followed by addition of n-octyne (0.14 mL, 0.93 mmol, 5 equiv). Copper sulfate (6 mg, 0.037 mmol, 0.2 equiv) and ascorbic acid (10 mg, 0.056 mmol, 0.3 equiv) were then added to the mixture. The reaction was allowed to stir at room temperature for 6 h. The reaction was quenched with distilled water, and the crude product was extracted with chloroform, followed by water and brine washes. The organic layer was then dried over MgSO4 and concentrated in vacuo. Purification was performed by column chromatography (EtOAc/hexanes). The product was obtained as white crystals (25 mg, 50%). m.p. 113.2–115.4 °C; 1H NMR (400 MHz, CDCl3): δ 8.19 (dd, 1H, 4J = 3.8 Hz, 4J = 1.84 Hz), 8.06 (m, 2H), 7.91 (s, 1H), 2.85 (t, 2H, 3J = 8.0 Hz), 1.77 (m, 2H), 1.31–1.47 (m, 6H),0.91 (m, 3H); 13C NMR (100 MHz, CDCl3): δ150.5, 149.0, 148.4, 139.1, 126.8, 119.1, 118.9, 104.5, 31.8, 29.4, 29.1, 25.9, 22.8, 14.3; IR (microscope): ν = 3147, 3114, 3095, 3059, 2956, 2929, 2857, 1637, 1540 cm-1; ES-HRMS calculated for C14H18N5O [M+H]: 272.1506; observed: 272.1513. Rf = 0.51 (1:3 EtOAc/hexanes).

Refinement top

Although the hydrogen atoms could have been discerned in the difference electron density map, all H atoms were generated in idealized positions and refined using a riding model with fixed C—H distances (Caryl = 0.95 Å, Cmethyl = 0.98 Å, Cmethylene = 0.99 Å) and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : View of I. Non-hydrogen atoms are represented by Gaussian ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. : Compounds used in this study.
[Figure 3] Fig. 3. : Packing of I, showing the offset stacking of the triazole and benzoxadiazole rings. C–H···N hydrogen bonds are indicated by dotted lines.
[Figure 4] Fig. 4. : Alternate view of the packing of I.
5-(4-Hexyl-1H-1,2,3-triazol-1-yl)-2,1,3-benzoxadiazole top
Crystal data top
C14H17N5OZ = 2
Mr = 271.33F(000) = 288
Triclinic, P1Dx = 1.315 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3604 (8) ÅCell parameters from 5179 reflections
b = 7.8585 (11) Åθ = 2.5–27.5°
c = 16.357 (2) ŵ = 0.09 mm1
α = 87.4656 (17)°T = 173 K
β = 86.2519 (16)°Plate, colourless
γ = 85.6240 (17)°1.02 × 0.35 × 0.03 mm
V = 685.04 (17) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3120 independent reflections
Radiation source: fine-focus sealed tube2568 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ω scansθmax = 27.6°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 66
Tmin = 0.915, Tmax = 0.997k = 1010
6114 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.1216P]
where P = (Fo2 + 2Fc2)/3
3120 reflections(Δ/σ)max = 0.002
181 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H17N5Oγ = 85.6240 (17)°
Mr = 271.33V = 685.04 (17) Å3
Triclinic, P1Z = 2
a = 5.3604 (8) ÅMo Kα radiation
b = 7.8585 (11) ŵ = 0.09 mm1
c = 16.357 (2) ÅT = 173 K
α = 87.4656 (17)°1.02 × 0.35 × 0.03 mm
β = 86.2519 (16)°
Data collection top
Bruker APEXII CCD
diffractometer
3120 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2568 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.997Rint = 0.013
6114 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
3120 reflectionsΔρmin = 0.22 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.41878 (17)0.07628 (11)0.71631 (5)0.0427 (2)
N10.2106 (2)0.18420 (14)0.73699 (6)0.0420 (3)
N20.44587 (19)0.04944 (13)0.63299 (6)0.0359 (2)
N30.10674 (16)0.28627 (11)0.42563 (5)0.0269 (2)
N40.33882 (18)0.36159 (13)0.41382 (6)0.0351 (2)
N50.36564 (18)0.36862 (13)0.33489 (6)0.0370 (2)
C10.1091 (2)0.22446 (14)0.66688 (7)0.0316 (2)
C20.2550 (2)0.14071 (13)0.60238 (7)0.0287 (2)
C30.1873 (2)0.15961 (13)0.51960 (6)0.0278 (2)
H30.28350.10410.47630.033*
C40.0229 (2)0.26178 (13)0.50634 (6)0.0259 (2)
C50.1709 (2)0.34929 (13)0.57088 (7)0.0299 (2)
H50.31470.42070.55750.036*
C60.1098 (2)0.33215 (14)0.64981 (7)0.0336 (3)
H60.20820.38920.69210.040*
C70.0134 (2)0.24553 (14)0.35268 (6)0.0284 (2)
H70.17720.19200.34370.034*
C80.1520 (2)0.29817 (14)0.29511 (7)0.0306 (2)
C90.1308 (2)0.29097 (17)0.20385 (7)0.0374 (3)
H9A0.20880.39890.18040.045*
H9B0.22800.19700.18780.045*
C100.1352 (2)0.26410 (16)0.16610 (7)0.0343 (3)
H10A0.21270.15380.18720.041*
H10B0.23540.35610.18270.041*
C110.1402 (2)0.26410 (15)0.07277 (7)0.0340 (3)
H11A0.04930.16690.05680.041*
H11B0.04900.37040.05260.041*
C120.4022 (2)0.25125 (16)0.03056 (7)0.0340 (3)
H12A0.49360.34840.04620.041*
H12B0.49380.14470.05030.041*
C130.4010 (2)0.25185 (16)0.06240 (7)0.0379 (3)
H13A0.31320.15290.07810.045*
H13B0.30550.35700.08190.045*
C140.6621 (3)0.24356 (19)0.10491 (8)0.0466 (3)
H14A0.64910.24580.16440.056*
H14B0.75600.13770.08740.056*
H14C0.74970.34180.09030.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0479 (5)0.0486 (5)0.0312 (4)0.0037 (4)0.0081 (4)0.0020 (4)
N10.0476 (6)0.0462 (6)0.0318 (5)0.0020 (5)0.0039 (5)0.0046 (4)
N20.0388 (6)0.0387 (5)0.0302 (5)0.0004 (4)0.0060 (4)0.0015 (4)
N30.0223 (4)0.0292 (4)0.0283 (5)0.0012 (3)0.0008 (3)0.0011 (3)
N40.0250 (5)0.0441 (6)0.0348 (5)0.0057 (4)0.0011 (4)0.0015 (4)
N50.0283 (5)0.0477 (6)0.0336 (5)0.0047 (4)0.0009 (4)0.0003 (4)
C10.0374 (6)0.0312 (6)0.0266 (5)0.0057 (5)0.0007 (4)0.0031 (4)
C20.0288 (6)0.0261 (5)0.0314 (5)0.0036 (4)0.0010 (4)0.0007 (4)
C30.0275 (5)0.0285 (5)0.0272 (5)0.0017 (4)0.0023 (4)0.0037 (4)
C40.0263 (5)0.0259 (5)0.0256 (5)0.0053 (4)0.0007 (4)0.0010 (4)
C50.0279 (6)0.0280 (5)0.0328 (6)0.0004 (4)0.0040 (4)0.0028 (4)
C60.0378 (6)0.0323 (6)0.0299 (6)0.0016 (5)0.0063 (5)0.0062 (4)
C70.0241 (5)0.0334 (6)0.0268 (5)0.0008 (4)0.0018 (4)0.0011 (4)
C80.0247 (5)0.0354 (6)0.0312 (6)0.0013 (4)0.0007 (4)0.0013 (4)
C90.0299 (6)0.0539 (7)0.0275 (6)0.0017 (5)0.0039 (4)0.0031 (5)
C100.0313 (6)0.0438 (7)0.0271 (5)0.0021 (5)0.0035 (4)0.0002 (5)
C110.0325 (6)0.0416 (6)0.0272 (5)0.0018 (5)0.0043 (4)0.0010 (4)
C120.0333 (6)0.0410 (6)0.0274 (5)0.0009 (5)0.0034 (4)0.0017 (4)
C130.0390 (7)0.0468 (7)0.0275 (6)0.0001 (5)0.0031 (5)0.0009 (5)
C140.0459 (8)0.0612 (9)0.0326 (6)0.0065 (6)0.0041 (5)0.0064 (6)
Geometric parameters (Å, º) top
O—N11.3821 (14)C8—C91.4929 (15)
O—N21.3849 (12)C9—C101.5195 (16)
N1—C11.3170 (15)C9—H9A0.9900
N2—C21.3173 (14)C9—H9B0.9900
N3—C71.3576 (13)C10—C111.5251 (15)
N3—N41.3581 (13)C10—H10A0.9900
N3—C41.4227 (13)C10—H10B0.9900
N4—N51.3067 (13)C11—C121.5223 (16)
N5—C81.3709 (14)C11—H11A0.9900
C1—C21.4257 (15)C11—H11B0.9900
C1—C61.4288 (16)C12—C131.5207 (15)
C2—C31.4231 (15)C12—H12A0.9900
C3—C41.3563 (15)C12—H12B0.9900
C3—H30.9500C13—C141.5200 (17)
C4—C51.4451 (15)C13—H13A0.9900
C5—C61.3511 (16)C13—H13B0.9900
C5—H50.9500C14—H14A0.9800
C6—H60.9500C14—H14B0.9800
C7—C81.3648 (15)C14—H14C0.9800
C7—H70.9500
N1—O—N2112.30 (8)C10—C9—H9A108.5
C1—N1—O104.60 (9)C8—C9—H9B108.5
C2—N2—O104.44 (9)C10—C9—H9B108.5
C7—N3—N4110.32 (9)H9A—C9—H9B107.5
C7—N3—C4129.66 (9)C9—C10—C11111.55 (9)
N4—N3—C4120.02 (9)C9—C10—H10A109.3
N5—N4—N3107.10 (9)C11—C10—H10A109.3
N4—N5—C8109.41 (9)C9—C10—H10B109.3
N1—C1—C2109.28 (10)C11—C10—H10B109.3
N1—C1—C6130.17 (11)H10A—C10—H10B108.0
C2—C1—C6120.55 (10)C12—C11—C10114.34 (9)
N2—C2—C3129.02 (10)C12—C11—H11A108.7
N2—C2—C1109.39 (10)C10—C11—H11A108.7
C3—C2—C1121.58 (10)C12—C11—H11B108.7
C4—C3—C2115.86 (9)C10—C11—H11B108.7
C4—C3—H3122.1H11A—C11—H11B107.6
C2—C3—H3122.1C13—C12—C11113.10 (9)
C3—C4—N3119.77 (9)C13—C12—H12A109.0
C3—C4—C5123.22 (10)C11—C12—H12A109.0
N3—C4—C5117.01 (9)C13—C12—H12B109.0
C6—C5—C4121.65 (10)C11—C12—H12B109.0
C6—C5—H5119.2H12A—C12—H12B107.8
C4—C5—H5119.2C14—C13—C12113.29 (10)
C5—C6—C1117.13 (10)C14—C13—H13A108.9
C5—C6—H6121.4C12—C13—H13A108.9
C1—C6—H6121.4C14—C13—H13B108.9
N3—C7—C8105.12 (9)C12—C13—H13B108.9
N3—C7—H7127.4H13A—C13—H13B107.7
C8—C7—H7127.4C13—C14—H14A109.5
C7—C8—N5108.05 (10)C13—C14—H14B109.5
C7—C8—C9131.26 (10)H14A—C14—H14B109.5
N5—C8—C9120.69 (10)C13—C14—H14C109.5
C8—C9—C10115.02 (9)H14A—C14—H14C109.5
C8—C9—H9A108.5H14B—C14—H14C109.5
N2—O—N1—C10.10 (12)C7—N3—C4—C5167.55 (10)
N1—O—N2—C20.04 (12)N4—N3—C4—C512.02 (14)
C7—N3—N4—N50.01 (12)C3—C4—C5—C61.06 (17)
C4—N3—N4—N5179.64 (9)N3—C4—C5—C6178.83 (10)
N3—N4—N5—C80.00 (13)C4—C5—C6—C10.44 (16)
O—N1—C1—C20.11 (12)N1—C1—C6—C5179.58 (12)
O—N1—C1—C6179.94 (11)C2—C1—C6—C50.36 (16)
O—N2—C2—C3179.31 (10)N4—N3—C7—C80.01 (12)
O—N2—C2—C10.03 (12)C4—N3—C7—C8179.59 (10)
N1—C1—C2—N20.09 (13)N3—C7—C8—N50.01 (12)
C6—C1—C2—N2179.96 (10)N3—C7—C8—C9179.38 (12)
N1—C1—C2—C3179.30 (10)N4—N5—C8—C70.01 (13)
C6—C1—C2—C30.65 (16)N4—N5—C8—C9179.46 (10)
N2—C2—C3—C4179.35 (11)C7—C8—C9—C1018.02 (19)
C1—C2—C3—C40.08 (15)N5—C8—C9—C10161.30 (11)
C2—C3—C4—N3179.14 (9)C8—C9—C10—C11178.16 (10)
C2—C3—C4—C50.75 (15)C9—C10—C11—C12175.60 (10)
C7—N3—C4—C312.56 (16)C10—C11—C12—C13179.91 (10)
N4—N3—C4—C3167.88 (9)C11—C12—C13—C14178.54 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N2i0.952.523.4674 (15)177
C5—H5···N4ii0.952.463.3445 (15)154
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H17N5O
Mr271.33
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)5.3604 (8), 7.8585 (11), 16.357 (2)
α, β, γ (°)87.4656 (17), 86.2519 (16), 85.6240 (17)
V3)685.04 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)1.02 × 0.35 × 0.03
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.915, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
6114, 3120, 2568
Rint0.013
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.04
No. of reflections3120
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXD (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N2i0.952.523.4674 (15)177.0
C5—H5···N4ii0.952.463.3445 (15)154.2
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y+1, z+1.
 

Acknowledgements

This work was supported by the Natural Science and Engineering Research Council of Canada and the Alberta Glycomics Centre.

References

First citationBrown, A., Ngai, T. Y., Key, J. A. & Cairo, C. W. (2012). J. Phys. Chem. A, 116, 46–54.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCairo, C. W., Key, J. A. & Sadek, C. M. (2010). Curr. Opin. Chem. Biol. 14, 57–63.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosta, M. S., Boechat, N., Ferreira, V. F., Wardell, S. M. S. V. & Skakle, J. M. S. (2006). Acta Cryst. E62, o2048–o2050.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKey, J. A. & Cairo, C. W. (2011). Dyes Pigm. 88, 95–102.  Web of Science CrossRef CAS Google Scholar
First citationKey, J. A., Cairo, C. W. & McDonald, R. (2012a). Acta Cryst. E68, o3130–o3131.  CSD CrossRef IUCr Journals Google Scholar
First citationKey, J. A., Cairo, C. W. & McDonald, R. (2012b). Acta Cryst. E68, o3132.  CSD CrossRef IUCr Journals Google Scholar
First citationKey, J. A., Koh, S., Timerghazin, Q. K., Brown, A. & Cairo, C. W. (2009). Dyes Pigm. 82, 196–203.  Web of Science CrossRef CAS Google Scholar
First citationLavis, L. D. & Raines, R. T. (2008). ACS Chem. Biol. 3, 142–155.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3128-o3129
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds