organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[1-(2,1,3-Benzoxa­diazol-5-ylmeth­yl)-1H-1,2,3-triazol-4-yl]hexan-1-one

aAlberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada, and bX-ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
*Correspondence e-mail: Bob.McDonald@ualberta.ca

(Received 21 August 2012; accepted 5 October 2012; online 13 October 2012)

The title compound, C15H17N5O2, was synthesized as part of a series of benzoxadiazole analogs which were examined for fluorescent properties by Cu-catalysed azide–alkyne cyclo­addition (CuAAC) of a 4-azido­methyl-benzoxadiazole substrate. The structure shows a nearly coplanar orientation of the hexa­none keto group and the 1,2,3-triazole ring [dihedral angle = 4.3 (3)°], while the benzoxadiazole and triazole groups are much more severely inclined [dihedral angle = 70.87 (4)°]. In the crystal, weak C—H⋯N inter­actions connect translationally-related triazole rings, while another set of C—H⋯N inter­actions is formed between inversion-related benzoxadiazole units, forming a three-dimensional network. The crystal studied was a non-merohedral twin with refined value of the twin fraction of 0.2289 (16).

Related literature

For the synthesis of similar benzoxadiazole compounds, see: Key & Cairo (2011[Key, J. A. & Cairo, C. W. (2011). Dyes Pigm. 88, 95-102.]); Li et al. (2010[Li, C., Henry, E., Mani, N. K., Tang, J., Brochon, J.-C., Deprez, E. & Xie, J. (2010). Eur. J. Org. Chem. pp. 2395-2405.]). For two related benzoxadiazole-triazole structures, see: Key, Cairo & Ferguson (2012[Key, J. A., Cairo, C. W. & Ferguson, M. J. (2012). Acta Cryst. E68, o3128-o3129.]); Key, Cairo & McDonald (2012[Key, J. A., Cairo, C. W. & McDonald, R. (2012). Acta Cryst. E68, o3130-o3131.]). For structures of 1-(ar­yl)methyl-1,2,3-triazole compounds with 4-carbonyl substituents [RC(O) or ROC(O)], see: Harju et al. (2003[Harju, K., Vahermo, M., Mutikainen, I. & Yli-Kauhaluoma, J. (2003). J. Comb. Chem. 5, 826-833.]); Huang et al. (2010[Huang, C.-C., Wu, F.-L., Lo, Y. H., Lai, W.-R. & Lin, C.-H. (2010). Acta Cryst. E66, o1690.]); Dong & Cheng (2011[Dong, S.-L. & Cheng, X.-C. (2011). Acta Cryst. E67, o769.]); Jia & Lu (2011[Jia, J. & Lu, D. (2011). Acta Cryst. E67, o127.]); Menendez et al. (2012[Menendez, C., Gau1, S., Ladeira, S., Lherbet, C. & Baltas, M. (2012). Eur. J. Org. Chem. pp. 409-416.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17N5O2

  • Mr = 299.34

  • Monoclinic, P 21 /c

  • a = 16.5752 (16) Å

  • b = 5.5429 (5) Å

  • c = 16.2452 (16) Å

  • β = 91.3612 (13)°

  • V = 1492.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.74 × 0.14 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.935, Tmax = 0.995

  • 45733 measured reflections

  • 3079 independent reflections

  • 2413 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.091

  • S = 1.03

  • 3079 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N2i 0.95 2.58 3.475 (2) 158
C8—H8⋯N5ii 0.95 2.41 3.350 (2) 171
Symmetry codes: (i) -x, -y+1, -z; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXD (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In an effort to explore benzoxadiazole derivatives with interesting spectroscopic properties, we generated the title compound, I, for comparison to its parent 4-azidomethyl-benzoxadiazole (II). Although we observed large changes in the spectra of substrates with an azido group conjugated to the chromophore, derivatives with an intervening methylene group tended to have only small changes upon triazole formation (Key & Cairo, 2011). Compound I was synthesized unintentionally through the use of an oxidized sample of n-octyne which also contained oct-1-yn-3-one as an impurity. The hexanone product was isolated by column chromatography and used for structural studies. (λmaxABS EtOH: 278, 289 nm, Absorption coefficient: 12,300 M-1cm-1)

In the crystal the 1,2,3-triazole ring and hexan-1-on-1-yl groups are nearly coplanar; the angle between the ketonic fragment (O2-C10-C11) and the 1,2,3-triazole ring is 4.3 (3)°. The rings of the benzoxadiazole and triazole groups are much more severely inclined (70.87 (4)°). Weak C-H···N interactions are observed between triazole moieties related via translation parallel to the b axis (2.41 Å for H8···N5[x, -1+y, z]). A further set of weak C-H···N interactions is seen between benzoxadiazole groups related by the inversion center (0, 1/2, 0) (2.58 Å for H3···N2[-x, 1-y, -z]). A parallel-stacking interaction is observed between benzoxadiazole rings related by inversion through the origin (interplanar spacing = 3.328 Å).

Related literature top

For the synthesis of similar benzoxadiazole compounds, see: Key & Cairo (2011); Li et al. (2010). For two related benzoxadiazole-triazole structures, see: Key, Cairo & Ferguson (2012); Key, Cairo & McDonald (2012). For structures of 1-(aryl)methyl-1,2,3-triazole compounds with 4-carbonyl substituents [RC(O) or ROC(O)], see: Harju et al. (2003); Huang et al. (2010); Dong & Cheng (2011); Jia & Lu (2011); Menendez et al. (2012). Scheme: NN double bond very short

Experimental top

4-(Azidomethyl)benz-[2,1,3-d]-oxadiazole (II) (40 mg, 0.23 mmol, 1 equiv) was dissolved in 1:1 water/methanol (5 mL). To this solution was added n-octyne (0.17 mL, 1.14 mmol, 5 equiv), which also contained oct-1-yn-3-one as an impurity. Copper sulfate (7 mg, 0.046 mmol, 0.2 equiv) and ascorbic acid (12 mg, 0.068 mmol, 0.3 equiv) were then added to the solution. The reaction mixture was allowed to stir at room temperature for approximately 1 h, forming a red precipitate. The precipitate was filtered off and the product was obtained after purification by column chromatography (EtOAc/hexanes) (35 mg, 51% yield). 1H NMR (400 MHz, CDCl3): δ 8.16 (s, 1H), 7.89 (d, 1H, 3J = 9.2 Hz), 7.51 (s, 1H), 7.32 (dd, 1H, 4J = 1.2 Hz, 3J = 9.2 Hz), 5.70 (s, 2H), 3.11(t, 2H, 3J = 7.2 Hz), 1.74 (m, 2H), 1.36 (m, 4H), 0.89 (m, 3H); 13C NMR (100 MHz, CDCl3): δ 195.5, 149.1, 148.9, 148.8, 138.1, 131.1, 126.0, 118.5, 116.0, 54.1, 39.8, 31.6, 23.8, 22.7, 14.2; IR (microscope): ν = 3098, 2954, 2930, 1691, 1531 cm-1; ES-HRMS calculated for C15H17N5O2Na [M+Na]+: 322.1279; observed: 322.1279. Rf = 0.45 (1:1 EtOAc/hexanes).

Refinement top

The crystal used for data collection was found to display non-merohedral twinning. Both components of the twin were indexed with the program CELL_NOW (Bruker, 2008). The second twin component can be related to the first component by 180° rotation about the [-1 0 2] axis in both real and reciprocal space. A raw data file was produced by the data integration program SAINT (Bruker, 2008), using the two-component orientation matrix file that had been produced by CELL_NOW. Integrated intensities for the reflections from the two components were written into a SHELXL-97 HKLF 5 reflection file with the program TWINABS (Bruker, 2008), using all reflection data (exactly overlapped, partially overlapped and non-overlapped). The reflection (1 0 0) was found to have an excessively high disagreement between Fo and Fc, and was omitted from the refinement. The refined value of the twin fraction (SHELXL-97 BASF parameter) was 0.2289 (16). All H atoms were generated in idealized positions and refined using a riding model with fixed C-H distances (C-Haromatic = 0.95 Å, C-Hmethylene = 0.99 Å, C-Hmethyl = 0.98 Å) and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of I. Non-hydrogen atoms are represented by Gaussian ellipsoids at the 50% probability level. Hydrogen atoms are represented with artificially small thermal parameters.
[Figure 2] Fig. 2. Illustration of crystal packing as viewed parallel to the crystal b axis. Nonbonded C-H···N interactions are shown with dashed lines (see Table 1).
[Figure 3] Fig. 3. Compounds used in this study.
1-[1-(2,1,3-Benzoxadiazol-5-ylmethyl)-1H-1,2,3-triazol-4-yl]hexan-1-one top
Crystal data top
C15H17N5O2F(000) = 632
Mr = 299.34Dx = 1.333 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5974 reflections
a = 16.5752 (16) Åθ = 2.5–24.3°
b = 5.5429 (5) ŵ = 0.09 mm1
c = 16.2452 (16) ÅT = 173 K
β = 91.3612 (13)°Rod, colourless
V = 1492.1 (2) Å30.74 × 0.14 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3079 independent reflections
Radiation source: fine-focus sealed tube2413 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 8.26 pixels mm-1θmax = 26.5°, θmin = 1.2°
ω scansh = 2020
Absorption correction: multi-scan
(TWINABS; Bruker, 2008)
k = 66
Tmin = 0.935, Tmax = 0.995l = 2020
45733 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0331P)2 + 0.4646P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3079 reflectionsΔρmax = 0.19 e Å3
201 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0114 (15)
Crystal data top
C15H17N5O2V = 1492.1 (2) Å3
Mr = 299.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.5752 (16) ŵ = 0.09 mm1
b = 5.5429 (5) ÅT = 173 K
c = 16.2452 (16) Å0.74 × 0.14 × 0.06 mm
β = 91.3612 (13)°
Data collection top
Bruker APEXII CCD
diffractometer
3079 independent reflections
Absorption correction: multi-scan
(TWINABS; Bruker, 2008)
2413 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.995Rint = 0.051
45733 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
3079 reflectionsΔρmin = 0.17 e Å3
201 parameters
Special details top

Geometry. All standard uncertainties (s.u.'s) (except the s.u. in the dihedral angle between two least-squares planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving least-squares planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07380 (7)0.1919 (2)0.16041 (7)0.0409 (3)
O20.51268 (8)0.0088 (2)0.11538 (10)0.0593 (4)
N10.03444 (8)0.0165 (3)0.18558 (9)0.0382 (4)
N20.03404 (8)0.3110 (3)0.09850 (9)0.0363 (3)
N30.29027 (7)0.1559 (2)0.00229 (8)0.0272 (3)
N40.29675 (8)0.3994 (2)0.00904 (9)0.0317 (3)
N50.36597 (7)0.4428 (2)0.04758 (9)0.0309 (3)
C10.02958 (9)0.0270 (3)0.13892 (9)0.0287 (4)
C20.02964 (8)0.1752 (3)0.08476 (9)0.0272 (3)
C30.09143 (9)0.2061 (3)0.02610 (9)0.0278 (3)
H30.09180.34060.01010.033*
C40.14968 (9)0.0339 (3)0.02451 (9)0.0256 (3)
C50.14964 (9)0.1700 (3)0.07982 (10)0.0289 (3)
H50.19190.28500.07660.035*
C60.09180 (9)0.2039 (3)0.13617 (10)0.0311 (4)
H60.09270.33920.17210.037*
C70.21712 (9)0.0526 (3)0.03636 (10)0.0314 (4)
H7A0.22940.10980.05800.038*
H7B0.19940.15530.08330.038*
C80.35461 (9)0.0453 (3)0.03618 (10)0.0293 (4)
H80.36460.12330.03950.035*
C90.40295 (9)0.2287 (3)0.06506 (10)0.0288 (4)
C100.48268 (9)0.2074 (3)0.10742 (10)0.0330 (4)
C110.52284 (9)0.4320 (3)0.13876 (11)0.0331 (4)
H11A0.48860.50570.18110.040*
H11B0.52680.54840.09280.040*
C120.60693 (9)0.3892 (3)0.17585 (11)0.0349 (4)
H12A0.60290.27670.22290.042*
H12B0.64090.31170.13410.042*
C130.64772 (9)0.6203 (3)0.20530 (10)0.0320 (4)
H13A0.64960.73550.15880.038*
H13B0.61490.69410.24880.038*
C140.73289 (10)0.5801 (3)0.23904 (12)0.0422 (4)
H14A0.76650.51540.19460.051*
H14B0.73150.45760.28330.051*
C150.77195 (11)0.8090 (4)0.27312 (11)0.0450 (5)
H15A0.82650.77230.29390.054*
H15B0.73970.87220.31800.054*
H15C0.77480.93000.22930.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0309 (6)0.0481 (8)0.0440 (7)0.0059 (6)0.0048 (5)0.0042 (6)
O20.0466 (8)0.0264 (7)0.1034 (13)0.0055 (6)0.0278 (8)0.0033 (7)
N10.0341 (7)0.0428 (9)0.0379 (8)0.0016 (7)0.0028 (6)0.0012 (7)
N20.0316 (7)0.0373 (8)0.0400 (8)0.0036 (6)0.0019 (6)0.0019 (7)
N30.0270 (6)0.0249 (7)0.0297 (7)0.0020 (5)0.0035 (5)0.0010 (6)
N40.0301 (7)0.0256 (7)0.0395 (8)0.0010 (6)0.0011 (6)0.0004 (6)
N50.0277 (7)0.0242 (7)0.0409 (8)0.0001 (5)0.0004 (6)0.0006 (6)
C10.0264 (8)0.0317 (9)0.0279 (8)0.0042 (7)0.0016 (6)0.0018 (7)
C20.0244 (7)0.0258 (8)0.0310 (8)0.0003 (6)0.0061 (6)0.0037 (7)
C30.0304 (8)0.0248 (8)0.0281 (8)0.0035 (7)0.0041 (6)0.0008 (7)
C40.0254 (7)0.0259 (8)0.0254 (8)0.0039 (6)0.0045 (6)0.0033 (6)
C50.0281 (8)0.0250 (8)0.0334 (8)0.0024 (6)0.0024 (6)0.0016 (7)
C60.0354 (8)0.0256 (8)0.0323 (9)0.0004 (7)0.0019 (7)0.0037 (7)
C70.0311 (8)0.0339 (9)0.0292 (9)0.0043 (7)0.0012 (6)0.0042 (7)
C80.0288 (8)0.0235 (8)0.0359 (9)0.0006 (6)0.0040 (6)0.0007 (7)
C90.0277 (8)0.0228 (8)0.0359 (9)0.0004 (6)0.0036 (6)0.0001 (7)
C100.0290 (8)0.0258 (9)0.0442 (10)0.0011 (7)0.0009 (7)0.0014 (8)
C110.0287 (8)0.0285 (9)0.0422 (10)0.0003 (7)0.0007 (7)0.0011 (7)
C120.0323 (8)0.0312 (9)0.0410 (10)0.0020 (7)0.0037 (7)0.0050 (8)
C130.0295 (8)0.0344 (9)0.0321 (9)0.0017 (7)0.0005 (7)0.0001 (7)
C140.0370 (9)0.0402 (11)0.0488 (11)0.0043 (8)0.0115 (8)0.0055 (9)
C150.0410 (10)0.0518 (12)0.0418 (11)0.0113 (9)0.0077 (8)0.0025 (9)
Geometric parameters (Å, º) top
O1—N21.3831 (18)C7—H7B0.9900
O1—N11.3835 (18)C8—C91.370 (2)
O2—C101.214 (2)C8—H80.9500
N1—C11.320 (2)C9—C101.480 (2)
N2—C21.320 (2)C10—C111.495 (2)
N3—C81.3376 (19)C11—C121.524 (2)
N3—N41.3581 (18)C11—H11A0.9900
N3—C71.4682 (19)C11—H11B0.9900
N4—N51.3160 (17)C12—C131.520 (2)
N5—C91.3627 (19)C12—H12A0.9900
C1—C21.425 (2)C12—H12B0.9900
C1—C61.425 (2)C13—C141.519 (2)
C2—C31.426 (2)C13—H13A0.9900
C3—C41.358 (2)C13—H13B0.9900
C3—H30.9500C14—C151.523 (2)
C4—C51.444 (2)C14—H14A0.9900
C4—C71.513 (2)C14—H14B0.9900
C5—C61.354 (2)C15—H15A0.9800
C5—H50.9500C15—H15B0.9800
C6—H60.9500C15—H15C0.9800
C7—H7A0.9900
N2—O1—N1112.57 (11)N5—C9—C10123.94 (14)
C1—N1—O1104.30 (13)C8—C9—C10127.49 (14)
C2—N2—O1104.33 (13)O2—C10—C9118.73 (15)
C8—N3—N4111.20 (12)O2—C10—C11122.74 (14)
C8—N3—C7129.75 (13)C9—C10—C11118.53 (14)
N4—N3—C7119.02 (13)C10—C11—C12113.64 (14)
N5—N4—N3106.65 (12)C10—C11—H11A108.8
N4—N5—C9108.83 (12)C12—C11—H11A108.8
N1—C1—C2109.40 (14)C10—C11—H11B108.8
N1—C1—C6129.85 (15)C12—C11—H11B108.8
C2—C1—C6120.73 (14)H11A—C11—H11B107.7
N2—C2—C1109.39 (14)C13—C12—C11112.92 (14)
N2—C2—C3129.38 (15)C13—C12—H12A109.0
C1—C2—C3121.22 (14)C11—C12—H12A109.0
C4—C3—C2116.78 (14)C13—C12—H12B109.0
C4—C3—H3121.6C11—C12—H12B109.0
C2—C3—H3121.6H12A—C12—H12B107.8
C3—C4—C5121.82 (14)C14—C13—C12113.13 (14)
C3—C4—C7120.05 (14)C14—C13—H13A109.0
C5—C4—C7118.13 (14)C12—C13—H13A109.0
C6—C5—C4122.70 (15)C14—C13—H13B109.0
C6—C5—H5118.6C12—C13—H13B109.0
C4—C5—H5118.6H13A—C13—H13B107.8
C5—C6—C1116.74 (15)C13—C14—C15113.11 (15)
C5—C6—H6121.6C13—C14—H14A109.0
C1—C6—H6121.6C15—C14—H14A109.0
N3—C7—C4111.25 (12)C13—C14—H14B109.0
N3—C7—H7A109.4C15—C14—H14B109.0
C4—C7—H7A109.4H14A—C14—H14B107.8
N3—C7—H7B109.4C14—C15—H15A109.5
C4—C7—H7B109.4C14—C15—H15B109.5
H7A—C7—H7B108.0H15A—C15—H15B109.5
N3—C8—C9104.76 (14)C14—C15—H15C109.5
N3—C8—H8127.6H15A—C15—H15C109.5
C9—C8—H8127.6H15B—C15—H15C109.5
N5—C9—C8108.57 (13)
N2—O1—N1—C10.28 (17)C2—C1—C6—C50.3 (2)
N1—O1—N2—C20.55 (16)C8—N3—C7—C494.95 (19)
C8—N3—N4—N50.04 (18)N4—N3—C7—C482.78 (18)
C7—N3—N4—N5178.17 (12)C3—C4—C7—N398.31 (16)
N3—N4—N5—C90.00 (17)C5—C4—C7—N381.66 (17)
O1—N1—C1—C20.09 (16)N4—N3—C8—C90.05 (17)
O1—N1—C1—C6178.92 (15)C7—N3—C8—C9177.93 (14)
O1—N2—C2—C10.58 (16)N4—N5—C9—C80.03 (18)
O1—N2—C2—C3178.43 (14)N4—N5—C9—C10179.26 (15)
N1—C1—C2—N20.45 (18)N3—C8—C9—N50.05 (17)
C6—C1—C2—N2179.40 (14)N3—C8—C9—C10179.21 (15)
N1—C1—C2—C3178.66 (14)N5—C9—C10—O2175.34 (17)
C6—C1—C2—C30.3 (2)C8—C9—C10—O23.8 (3)
N2—C2—C3—C4178.81 (15)N5—C9—C10—C114.8 (2)
C1—C2—C3—C40.1 (2)C8—C9—C10—C11176.09 (16)
C2—C3—C4—C50.4 (2)O2—C10—C11—C124.1 (3)
C2—C3—C4—C7179.59 (13)C9—C10—C11—C12176.03 (15)
C3—C4—C5—C60.4 (2)C10—C11—C12—C13178.46 (14)
C7—C4—C5—C6179.61 (14)C11—C12—C13—C14177.59 (15)
C4—C5—C6—C10.0 (2)C12—C13—C14—C15176.65 (15)
N1—C1—C6—C5178.39 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N2i0.952.583.475 (2)158
C8—H8···N5ii0.952.413.350 (2)171
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H17N5O2
Mr299.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)16.5752 (16), 5.5429 (5), 16.2452 (16)
β (°) 91.3612 (13)
V3)1492.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.74 × 0.14 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(TWINABS; Bruker, 2008)
Tmin, Tmax0.935, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
45733, 3079, 2413
Rint0.051
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.091, 1.03
No. of reflections3079
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXD (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N2i0.952.583.475 (2)158
C8—H8···N5ii0.952.413.350 (2)171
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
 

Acknowledgements

We acknowledge the University of Alberta, the Natural Sciences and Engineering Research Council of Canada and the Alberta Glycomics Centre for funding of this work.

References

First citationBruker (2008). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, S.-L. & Cheng, X.-C. (2011). Acta Cryst. E67, o769.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarju, K., Vahermo, M., Mutikainen, I. & Yli-Kauhaluoma, J. (2003). J. Comb. Chem. 5, 826–833.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHuang, C.-C., Wu, F.-L., Lo, Y. H., Lai, W.-R. & Lin, C.-H. (2010). Acta Cryst. E66, o1690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJia, J. & Lu, D. (2011). Acta Cryst. E67, o127.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKey, J. A. & Cairo, C. W. (2011). Dyes Pigm. 88, 95–102.  Web of Science CrossRef CAS Google Scholar
First citationKey, J. A., Cairo, C. W. & Ferguson, M. J. (2012). Acta Cryst. E68, o3128–o3129.  CSD CrossRef IUCr Journals Google Scholar
First citationKey, J. A., Cairo, C. W. & McDonald, R. (2012). Acta Cryst. E68, o3130–o3131.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, C., Henry, E., Mani, N. K., Tang, J., Brochon, J.-C., Deprez, E. & Xie, J. (2010). Eur. J. Org. Chem. pp. 2395–2405.  Web of Science CrossRef Google Scholar
First citationMenendez, C., Gau1, S., Ladeira, S., Lherbet, C. & Baltas, M. (2012). Eur. J. Org. Chem. pp. 409–416.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds