metal-organic compounds
catena-Poly[zinc-μ3-{3,3′-[(1,7-dioxa-4,10-diazacyclododecane-4,10-diyl)bis(methylene)]dibenzoato}]
aCenter for Functional Nanoscale Materials, Department of Chemistry, Clark Atlanta University, 223 James P. Brawley Drive, Atlanta, GA 30314, USA, and bDepartment of Chemistry, Emory University, Atlanta, GA 30322, USA
*Correspondence e-mail: cingram@cau.edu
The ZnII ion in the title compound, [Zn(C24H28N2O6)]n, is located on a twofold rotation axis and is at the midpoint of a crown-4 moiety of 3,3′-[(1,7-dioxa-4,10-diazacyclododecane-4,10-diyl)bis(methylene)]dibenzoate anion. It is octahedrally coordinated by two N atoms and two O atoms of the crown moiety from one ligand and two carboxylate O atoms from two bridging intra-chain ligands. Metallomacrocyclic rings are identified in the structure. The metallomacrocycle contains two ZnII ions and 14 atoms from the bridging ligands. Repetition of these units gives rise to an infinite zigzag chain along [101]. C—H⋯O hydrogen bonds occur.
Related literature
For coordination polymers including metal-organic framework structures, see: Bai et al. (2012); Janiak (2003); Kitagawa et al. (2004); Li et al. (2012); Liao et al. (2012); Liu et al. (2012); O'Keeffe et al. (2000); Suh et al. (2012); Yoon et al. (2012).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2011); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
10.1107/S1600536812043450/mw2087sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812043450/mw2087Isup2.hkl
The title compound was synthesized in an autoclave by mixing the ligand, 3,3'-((1,7-dioxa-4,10-diazacyclododecane-4,10-diyl)bis(methylene))dibenzoic acid, LH2 (2x10-6 mol), Zn(NO3)2.6H2O (6x10-6 mol, 1.79 mg), H2O (0.60 ml) and pyridine (2x10-3 ml) in a vial of 2 ml capacity. The mixture was heated at 85 °C for 7 d and then cooled to ambient temperature. The white crystals were collected and washed with H2O by filtration. Elem. anal. calcd. C24H28N2O6Zn %: C, 56.98; H, 5.58; N, 5.54; Found: C, 56.99; H, 5.79; N, 5.58.
Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt), etc and is not relevant to the choice of reflections for
R-factors based on F2 are statistically about twice as large as those based on F and R- factors based on ALL data will be even larger.Data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).Fig. 1. A portion of the one-dimensional chain of 1 showing the 16-membered metallomacrocycle rings. |
[Zn(C24H28N2O6)] | F(000) = 1056 |
Mr = 505.87 | Dx = 1.622 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54184 Å |
a = 20.7264 (15) Å | Cell parameters from 3719 reflections |
b = 8.9791 (7) Å | θ = 4.0–67.7° |
c = 13.9745 (19) Å | µ = 2.05 mm−1 |
β = 127.200 (4)° | T = 173 K |
V = 2071.5 (4) Å3 | Column, colourless |
Z = 4 | 0.48 × 0.14 × 0.11 mm |
Bruker D8 diffractometer with an APEXII detector | 1684 independent reflections |
Radiation source: sealed tube | 1538 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 512 pixels mm-1 | θmax = 65.1°, θmin = 5.4° |
ϕ and ω scans with a narrow frame width | h = −24→18 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | k = −10→10 |
Tmin = 0.414, Tmax = 0.685 | l = −14→15 |
4413 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0475P)2 + 2.6887P] where P = (Fo2 + 2Fc2)/3 |
1684 reflections | (Δ/σ)max < 0.001 |
150 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
[Zn(C24H28N2O6)] | V = 2071.5 (4) Å3 |
Mr = 505.87 | Z = 4 |
Monoclinic, C2/c | Cu Kα radiation |
a = 20.7264 (15) Å | µ = 2.05 mm−1 |
b = 8.9791 (7) Å | T = 173 K |
c = 13.9745 (19) Å | 0.48 × 0.14 × 0.11 mm |
β = 127.200 (4)° |
Bruker D8 diffractometer with an APEXII detector | 1684 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 1538 reflections with I > 2σ(I) |
Tmin = 0.414, Tmax = 0.685 | Rint = 0.029 |
4413 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.47 e Å−3 |
1684 reflections | Δρmin = −0.21 e Å−3 |
150 parameters |
Experimental. Absorption correction: SADABS (Bruker-AXS, 2008) was used for absorption correction. R(int) was 0.0732 before and 0.0388 after correction. The ratio of minimum to maximum transmission is 0.6049. The λ/2 correction factor is not present. |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2> σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.00000 | 0.05167 (4) | 0.25000 | 0.0179 (1) | |
O1 | 0.07654 (9) | 0.18185 (17) | 0.24895 (14) | 0.0224 (4) | |
O2 | −0.00673 (9) | 0.3592 (2) | 0.11945 (15) | 0.0325 (5) | |
O3 | 0.55621 (9) | 0.63747 (19) | 0.71322 (13) | 0.0254 (4) | |
N1 | 0.39893 (11) | 0.5343 (2) | 0.56752 (16) | 0.0193 (5) | |
C1 | 0.06066 (13) | 0.3070 (3) | 0.19486 (19) | 0.0213 (6) | |
C2 | 0.13504 (13) | 0.3887 (2) | 0.22567 (19) | 0.0196 (6) | |
C3 | 0.21035 (13) | 0.3696 (2) | 0.33678 (19) | 0.0201 (6) | |
C4 | 0.28068 (13) | 0.4328 (2) | 0.36223 (19) | 0.0200 (6) | |
C5 | 0.36142 (13) | 0.4041 (2) | 0.48377 (19) | 0.0206 (6) | |
C6 | 0.33847 (13) | 0.5969 (3) | 0.58104 (19) | 0.0232 (6) | |
C7 | 0.37416 (14) | 0.7072 (3) | 0.6834 (2) | 0.0258 (7) | |
C8 | 0.42804 (14) | 0.6450 (3) | 0.52237 (19) | 0.0247 (6) | |
C9 | 0.49985 (14) | 0.7382 (3) | 0.6195 (2) | 0.0255 (7) | |
C10 | 0.27460 (13) | 0.5139 (3) | 0.2717 (2) | 0.0229 (6) | |
C11 | 0.19960 (14) | 0.5358 (3) | 0.1619 (2) | 0.0235 (7) | |
C12 | 0.12995 (13) | 0.4758 (2) | 0.13890 (19) | 0.0204 (6) | |
H3 | 0.21390 | 0.31190 | 0.39680 | 0.0240* | |
H5A | 0.35370 | 0.32330 | 0.52420 | 0.0250* | |
H5B | 0.40020 | 0.36750 | 0.46990 | 0.0250* | |
H6A | 0.31330 | 0.51420 | 0.59450 | 0.0280* | |
H6B | 0.29520 | 0.64700 | 0.50520 | 0.0280* | |
H7A | 0.38980 | 0.80030 | 0.66420 | 0.0310* | |
H7B | 0.33420 | 0.73180 | 0.69810 | 0.0310* | |
H8A | 0.38270 | 0.71270 | 0.46570 | 0.0300* | |
H8B | 0.44340 | 0.59150 | 0.47690 | 0.0300* | |
H9A | 0.52510 | 0.78940 | 0.58690 | 0.0310* | |
H9B | 0.48220 | 0.81430 | 0.65050 | 0.0310* | |
H10 | 0.32190 | 0.55410 | 0.28530 | 0.0280* | |
H11 | 0.19600 | 0.59300 | 0.10160 | 0.0280* | |
H12 | 0.07880 | 0.49400 | 0.06410 | 0.0250* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0119 (2) | 0.0195 (2) | 0.0178 (2) | 0.0000 | 0.0066 (2) | 0.0000 |
O1 | 0.0161 (7) | 0.0227 (8) | 0.0279 (8) | −0.0020 (6) | 0.0131 (7) | 0.0024 (6) |
O2 | 0.0159 (8) | 0.0391 (10) | 0.0287 (9) | −0.0006 (7) | 0.0063 (7) | 0.0110 (7) |
O3 | 0.0178 (8) | 0.0244 (8) | 0.0205 (7) | −0.0034 (6) | 0.0045 (7) | 0.0021 (6) |
N1 | 0.0142 (9) | 0.0212 (10) | 0.0184 (9) | 0.0003 (7) | 0.0077 (8) | 0.0012 (7) |
C1 | 0.0181 (11) | 0.0250 (12) | 0.0170 (10) | −0.0017 (9) | 0.0086 (9) | −0.0012 (9) |
C2 | 0.0181 (11) | 0.0191 (11) | 0.0197 (10) | 0.0019 (8) | 0.0104 (9) | −0.0012 (8) |
C3 | 0.0198 (11) | 0.0198 (11) | 0.0183 (10) | 0.0003 (9) | 0.0103 (9) | 0.0006 (8) |
C4 | 0.0174 (11) | 0.0195 (11) | 0.0197 (10) | 0.0005 (8) | 0.0094 (9) | −0.0016 (8) |
C5 | 0.0154 (10) | 0.0218 (11) | 0.0192 (10) | 0.0000 (8) | 0.0077 (9) | 0.0007 (8) |
C6 | 0.0129 (10) | 0.0291 (12) | 0.0198 (10) | 0.0051 (9) | 0.0058 (9) | 0.0020 (9) |
C7 | 0.0181 (11) | 0.0279 (12) | 0.0226 (11) | 0.0082 (9) | 0.0077 (9) | 0.0021 (9) |
C8 | 0.0207 (11) | 0.0264 (12) | 0.0190 (10) | −0.0014 (9) | 0.0078 (10) | 0.0043 (9) |
C9 | 0.0217 (11) | 0.0237 (12) | 0.0234 (11) | −0.0022 (9) | 0.0096 (10) | 0.0059 (9) |
C10 | 0.0198 (11) | 0.0249 (11) | 0.0233 (11) | −0.0033 (9) | 0.0126 (10) | −0.0020 (9) |
C11 | 0.0244 (12) | 0.0239 (12) | 0.0208 (11) | −0.0004 (9) | 0.0130 (10) | 0.0022 (9) |
C12 | 0.0170 (11) | 0.0197 (11) | 0.0180 (10) | 0.0021 (8) | 0.0071 (9) | −0.0008 (8) |
Zn1—O1 | 1.978 (2) | C6—C7 | 1.515 (3) |
Zn1—O1i | 1.978 (2) | C8—C9 | 1.522 (4) |
Zn1—O3ii | 2.2869 (19) | C10—C11 | 1.388 (4) |
Zn1—N1ii | 2.2422 (19) | C11—C12 | 1.384 (4) |
Zn1—O3iii | 2.2869 (19) | C3—H3 | 0.9500 |
Zn1—N1iii | 2.2422 (19) | C5—H5A | 0.9900 |
O1—C1 | 1.281 (3) | C5—H5B | 0.9900 |
O2—C1 | 1.225 (3) | C6—H6A | 0.9900 |
O3—C9 | 1.431 (3) | C6—H6B | 0.9900 |
O3—C7iv | 1.429 (3) | C7—H7A | 0.9900 |
N1—C5 | 1.497 (3) | C7—H7B | 0.9900 |
N1—C6 | 1.486 (4) | C8—H8A | 0.9900 |
N1—C8 | 1.487 (4) | C8—H8B | 0.9900 |
C1—C2 | 1.516 (4) | C9—H9A | 0.9900 |
C2—C3 | 1.395 (3) | C9—H9B | 0.9900 |
C2—C12 | 1.392 (3) | C10—H10 | 0.9500 |
C3—C4 | 1.395 (4) | C11—H11 | 0.9500 |
C4—C5 | 1.521 (3) | C12—H12 | 0.9500 |
C4—C10 | 1.398 (3) | ||
O1—Zn1—O1i | 107.54 (8) | N1—C8—C9 | 114.72 (19) |
O1—Zn1—O3ii | 163.85 (7) | O3—C9—C8 | 106.6 (2) |
O1—Zn1—N1ii | 90.57 (8) | C4—C10—C11 | 120.2 (3) |
O1—Zn1—O3iii | 85.26 (7) | C10—C11—C12 | 121.0 (2) |
O1—Zn1—N1iii | 113.40 (8) | C2—C12—C11 | 119.8 (2) |
O1i—Zn1—O3ii | 85.26 (7) | C2—C3—H3 | 119.00 |
O1i—Zn1—N1ii | 113.40 (8) | C4—C3—H3 | 119.00 |
O1i—Zn1—O3iii | 163.85 (7) | N1—C5—H5A | 108.00 |
O1i—Zn1—N1iii | 90.57 (8) | N1—C5—H5B | 108.00 |
O3ii—Zn1—N1ii | 75.01 (7) | C4—C5—H5A | 108.00 |
O3ii—Zn1—O3iii | 84.09 (7) | C4—C5—H5B | 108.00 |
O3ii—Zn1—N1iii | 75.37 (7) | H5A—C5—H5B | 107.00 |
O3iii—Zn1—N1ii | 75.37 (7) | N1—C6—H6A | 109.00 |
N1ii—Zn1—N1iii | 139.73 (7) | N1—C6—H6B | 109.00 |
O3iii—Zn1—N1iii | 75.01 (7) | C7—C6—H6A | 109.00 |
Zn1—O1—C1 | 126.99 (19) | C7—C6—H6B | 109.00 |
C7iv—O3—C9 | 114.52 (19) | H6A—C6—H6B | 108.00 |
Zn1ii—O3—C9 | 115.48 (17) | C6—C7—H7A | 110.00 |
Zn1ii—O3—C7iv | 116.02 (14) | C6—C7—H7B | 110.00 |
C5—N1—C6 | 108.4 (2) | H7A—C7—H7B | 109.00 |
C5—N1—C8 | 110.03 (19) | O3iv—C7—H7A | 110.00 |
Zn1ii—N1—C5 | 107.87 (12) | O3iv—C7—H7B | 110.00 |
C6—N1—C8 | 113.0 (2) | N1—C8—H8A | 109.00 |
Zn1ii—N1—C6 | 105.39 (13) | N1—C8—H8B | 109.00 |
Zn1ii—N1—C8 | 111.90 (16) | C9—C8—H8A | 109.00 |
O1—C1—O2 | 126.6 (3) | C9—C8—H8B | 109.00 |
O1—C1—C2 | 113.7 (2) | H8A—C8—H8B | 108.00 |
O2—C1—C2 | 119.6 (2) | O3—C9—H9A | 110.00 |
C1—C2—C3 | 121.2 (2) | O3—C9—H9B | 110.00 |
C1—C2—C12 | 119.7 (2) | C8—C9—H9A | 110.00 |
C3—C2—C12 | 118.9 (3) | C8—C9—H9B | 110.00 |
C2—C3—C4 | 121.8 (2) | H9A—C9—H9B | 109.00 |
C3—C4—C5 | 119.4 (2) | C4—C10—H10 | 120.00 |
C3—C4—C10 | 118.2 (2) | C11—C10—H10 | 120.00 |
C5—C4—C10 | 122.4 (3) | C10—C11—H11 | 119.00 |
N1—C5—C4 | 116.19 (17) | C12—C11—H11 | 120.00 |
N1—C6—C7 | 113.6 (2) | C2—C12—H12 | 120.00 |
O3iv—C7—C6 | 106.6 (2) | C11—C12—H12 | 120.00 |
O1i—Zn1—O1—C1 | −36.0 (2) | O1—C1—C2—C3 | −28.4 (3) |
N1ii—Zn1—O1—C1 | −150.78 (19) | O1—C1—C2—C12 | 146.7 (2) |
O3iii—Zn1—O1—C1 | 133.96 (19) | O2—C1—C2—C3 | 155.2 (2) |
N1iii—Zn1—O1—C1 | 62.5 (2) | O2—C1—C2—C12 | −29.7 (4) |
Zn1—O1—C1—O2 | −11.7 (4) | C1—C2—C3—C4 | 173.8 (2) |
Zn1—O1—C1—C2 | 172.18 (15) | C12—C2—C3—C4 | −1.3 (3) |
C7iv—O3—C9—C8 | −176.1 (2) | C1—C2—C12—C11 | −172.2 (2) |
Zn1ii—O3—C9—C8 | −37.4 (3) | C3—C2—C12—C11 | 3.0 (3) |
C9—O3—C7iv—C6iv | 160.4 (2) | C2—C3—C4—C5 | −178.2 (2) |
C6—N1—C5—C4 | 53.7 (3) | C2—C3—C4—C10 | −1.7 (3) |
C8—N1—C5—C4 | −70.4 (3) | C3—C4—C5—N1 | −110.1 (2) |
Zn1ii—N1—C5—C4 | 167.3 (2) | C10—C4—C5—N1 | 73.5 (3) |
C5—N1—C6—C7 | 167.45 (19) | C3—C4—C10—C11 | 3.0 (4) |
C8—N1—C6—C7 | −70.3 (2) | C5—C4—C10—C11 | 179.4 (2) |
Zn1ii—N1—C6—C7 | 52.2 (2) | N1—C6—C7—O3iv | −49.9 (3) |
C5—N1—C8—C9 | −151.4 (2) | N1—C8—C9—O3 | 45.1 (3) |
C6—N1—C8—C9 | 87.3 (3) | C4—C10—C11—C12 | −1.3 (4) |
Zn1ii—N1—C8—C9 | −31.5 (3) | C10—C11—C12—C2 | −1.7 (4) |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x+1/2, −y+1/2, −z+1; (iii) x−1/2, −y+1/2, z−1/2; (iv) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5A···O1ii | 0.99 | 2.57 | 3.224 (3) | 124 |
C12—H12···O2v | 0.95 | 2.43 | 3.256 (3) | 145 |
Symmetry codes: (ii) −x+1/2, −y+1/2, −z+1; (v) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C24H28N2O6)] |
Mr | 505.87 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 173 |
a, b, c (Å) | 20.7264 (15), 8.9791 (7), 13.9745 (19) |
β (°) | 127.200 (4) |
V (Å3) | 2071.5 (4) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.05 |
Crystal size (mm) | 0.48 × 0.14 × 0.11 |
Data collection | |
Diffractometer | Bruker D8 diffractometer with an APEXII detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.414, 0.685 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4413, 1684, 1538 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.588 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.086, 1.06 |
No. of reflections | 1684 |
No. of parameters | 150 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.47, −0.21 |
Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5A···O1i | 0.9900 | 2.5700 | 3.224 (3) | 124 |
C12—H12···O2ii | 0.9500 | 2.4300 | 3.256 (3) | 145 |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x, −y+1, −z. |
Acknowledgements
Financial support for this work by USA NSF/CREST/CFNM Award No. HRD-1137751 is gratefully acknowledged.
References
Bai, S.-Q., Yong, A. M., Hu, J. J., Young, D. J., Zhang, X., Zong, Y., Xu, J., Zuo, J.-L. & Hor, T. S. A. (2012). CrystEngComm, 14, 961–971. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Janiak, C. (2003). Dalton Trans. pp. 2781–2804. Web of Science CrossRef Google Scholar
Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. Web of Science CrossRef CAS Google Scholar
Li, J.-R., Sculley, J. & Zhou, H.-C. (2012). Chem. Rev. 112, 869–932. Web of Science CrossRef CAS PubMed Google Scholar
Liao, L., Ingram, C. W., Vandeveer, D., Hardcastle, K., Solntsev, K. M., Sabo, D., Zhang, Z. J. & Weber, R. T. (2012). Inorg. Chim. Acta, 391, 1–9. Web of Science CSD CrossRef CAS Google Scholar
Liu, Y.-Y., Li, J., Ma, J.-F., Ma, J.-C. & Yang, J. (2012). CrystEngComm, 14, 169–177. Web of Science CSD CrossRef CAS Google Scholar
O'Keeffe, M., Eddaoudi, M., Li, H., Reineke, T. & Yaghi, O. M. (2000). J. Solid State Chem. 152, 3–20. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835. Web of Science CrossRef CAS PubMed Google Scholar
Yoon, M., Srirambalaji, R. & Kim, K. (2012). Chem. Rev. 112, 1196–1231. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound 1 is the first of a series of coordination polymers that were synthesized from the ligand LH2, 3,3'-((1,7-dioxa-4,10-diazacyclododecane-4,10-diyl)bis(methylene)) dibenzoic acid. In these new compounds the metal atoms are positioned in the center of the organic linker.
The asymmetric unit of 1 contains a ZnII ion and a deprotonated ligand L with formula C24H28N2O6Zn. The ZnII ion is 6-coordinate in a distorted octahedral geometry being bound to two nitrogen atoms and two oxygen atoms of the crown (1,7-diaza-12-crown-4) and two carboxylic oxygen atoms, one from each of two additional intra-chain ligands (Fig. 1). The Zn1—O1, Zn1—O3 and Zn1—N1 bond lengths are 1.978 (2) Å, 2.287 (2) Å and 2.242 (2) Å, respectively. The O1—Zn1—O1 angle is 107.54 (8)°. The shortest distance between two neighboring ZnII ions in a chain is 9.019 (1) Å.
The ZnII ion of the Zn(crown-4)2+ unit is located on a 2-fold rotation axis. The symmetry independent atoms consist of one half of the ligand with the rotation axis generating the second half of the ligand at the Zn atom. Bond circuits consisting of sixteen-membered metallomacrocycle rings can be identified in the structure. Each ring contains two ZnII ions and fourteen non-H atoms of the ligand. Each ZnII ion is a node for three ligands and two connected rings (Fig. 1). The pair of benzene moieties within a metallomacrocycle ring are co-planar within one standard deviation (0.0 (2)°) and the dihedral angle between this plane and the plane of the next two nearest phenyl rings along the 1-D chain is 68.79 (5)°. Repetition of these units creates a 1-D polymer network with an infinite number of these rings.