metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1402-m1403

Bis(diiso­propyl­ammonium) hexa­chlorido­stannate(IV)

aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: reissg@hhu.de

(Received 27 September 2012; accepted 18 October 2012; online 24 October 2012)

The title compound, (C6H16N)2[SnCl6], crystallizes with one diisopropyl­ammonium cation lying on a general position and the hexa­chloridostannate(IV) anion about a centre of inversion. The [SnCl6]2− anion undergoes a slight distortion from octa­hedral symmetry as the result of the formation of four unforked charge-supported N—H⋯Cl hydrogen bonds. The hydrogen bonds between the cations and anions form layers perpendicular to [101]. These layers are built by 24-membered rings which can be classified with an R88(24) graph-set descriptor. According to this hydrogen-bonding motif, the title compound is isostructural with (C6H16N)2[IrCl6].

Related literature

For related diisopropyl­ammonium salts, see: Fu et al. (2011[Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y. & Xiong, R.-G. (2011). Adv. Mater. 23, 5658-5662.]); Reiss (1998[Reiss, G. J. (1998). Acta Cryst. C54, 1489-1491.], 2002[Reiss, G. J. (2002). Acta Cryst. E58, m47-m50.], 2012[Reiss, G. J. (2012). J. Struct. Chem. 52, 418-421.]); Reiss & Helmbrecht (2012[Reiss, G. J. & Helmbrecht, C. (2012). Private communication (deposition number: CCDC 901473). CCDC, Cambridge, England.]); Reiss & Meyer (2011[Reiss, G. J. & Meyer, M. K. (2011). Acta Cryst. E67, o2169.]). For layered structures, see: Cameron et al. (1983[Cameron, T. S., James, M. A., Knop, O. & Falk, M. (1983). Can. J. Chem. 61, 2192-2198.]); Holl & Thewalt (1986[Holl, K. & Thewalt, U. (1986). Z. Naturforsch. Teil B, 41, 581-586.]); Rademeyer et al. (2007[Rademeyer, M., Lemmerer, A. & Billing, D. G. (2007). Acta Cryst. C63, m289-m292.]). For potassium hexa­halogenidometalates, see: Abrahams et al. (1989[Abrahams, S. C., Ihringer, J. & Marsh, P. (1989). Acta Cryst. B45, 26-34.]); Amilius et al. (1969[Amilius, Z., van Laar, B. & Rietveld, H. M. (1969). Acta Cryst. B25, 400-402.]); Boysen & Hewat (1978[Boysen, H. & Hewat, A. W. (1978). Acta Cryst. B34, 1412-1418.]); Coll et al. (1987[Coll, R. K., Fergusson, J. E., Penfold, B. R., Rankin, D. A. & Robinson, W. T. (1987). Aust. J. Chem. 40, 2115-2122.]); Hinz et al. (2000[Hinz, D., Gloger, T. & Meyer, G. (2000). Z. Anorg. Allg. Chem. 626, 822-824.]). For spectroscopy of hexa­chloridostannate(IV) salts, see: Brown et al. (1970[Brown, T. L., McDugle, W. G. Jr & Kent, L. G. (1970). J. Am. Chem. Soc. 92, 3645-3653.]); Ouasri et al. (2001[Ouasri, A., Elyoubi, M. S. D., Guedira, T., Rhandour, A., Mhiri, T. & Daoud, A. (2001). Spectrochim. Acta Part A, 57, 2593-2598.]). For graph-set theory and its applications, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Grell et al. (2002[Grell, J., Bernstein, J. & Tinhofer, G. (2002). Crystallogr. Rev. 8, 1-56.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H16N)2[SnCl6]

  • Mr = 535.81

  • Monoclinic, P 21 /n

  • a = 9.54362 (13) Å

  • b = 11.98179 (19) Å

  • c = 9.90669 (14) Å

  • β = 92.9406 (14)°

  • V = 1131.33 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.83 mm−1

  • T = 100 K

  • 0.33 × 0.27 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: numerical (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.634, Tmax = 0.922

  • 11414 measured reflections

  • 4972 independent reflections

  • 4468 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.048

  • S = 1.02

  • 4972 reflections

  • 120 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯Cl1 0.881 (16) 2.541 (16) 3.3449 (10) 152.1 (13)
N1—H12⋯Cl2i 0.864 (15) 2.488 (15) 3.3507 (10) 176.0 (14)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Even though there are more than one hundred diisopropylammonium (dipH) salt structures listed in the Cambridge Crystallographic Data Base only a limited number of halogenidometalate-containing salts are reported: [SiF6]2- (Reiss, 1998); [IrCl6]2- (Reiss, 2002); [FeCl4]- (Reiss, 2012), [CuCl4]2- (Reiss & Helmbrecht, 2012). Recently the simple dipH chloride has attracted much attention as it is a ferroelectric solid with a high phase transition temperature (Fu et al., 2011). This study on (dipH)2[SnCl6] is part of our long standing interest on the principles of arrangement of simple dipH salts (Reiss & Meyer, 2011).

The title compound (dipH)2[SnCl6] crystallizes with one dipH cation in a general position and one [SnCl6]2- anion located on a center of inversion. The C–N and C–C bond lengths and the bond angles of the cation are in the expected range. The [SnCl6]2- anion adopts a distorted octahedral geometry (angles between 89.00 (1) and 91.00 (1)°). The cations and anions are connected by medium-strong, charge-supported hydrogen bonds (Table 1) between the NH2+ groups and their neighbouring chlorine atoms (Fig. 1). Only four out of six chlorido ligands of each [SnCl6]2- anion are involved with the Sn–Cl bonds participating in hydrogen bonding significantly longer (2.4359 (3) and 2.4527 (3) Å) than the two others (2.4055 (3) Å). This bonding situation results in the formation of two-dimensional layers in the [101] plane, whose characteristic motif is an annealed, 24-membered, wavy, hydrogen bonded ring (Fig. 1) with the graph-set descriptor R88(24) (Etter et al., 1990). This second level graph-set is shown in Fig. 2 as part of the constructor graph (Grell et al. 2002). The two other representative second level graph-sets are C44(12) which run along [11–1] and C22(6) which represents the bent connection of one [SnCl6]2- anion with two dipH cations. The shortest H···Cl distance of the Cl3 is with 2.938 (16) Å roughly 0.5 Å longer than the two other H···Cl bonds. The acute N-H···Cl3 angle of 131.7 (12) ° supports our interpretation that the Cl3 atom is not involved in any significant hydrogen bond.

Analogous layered structures are also known for other (RnNH4-n)2[SnCl6] salts and have been discussed in detail (Holl & Thewalt, 1986; Cameron et al. 1983, Rademeyer et al. 2007).With the title compound featuring 24-membered hydrogen bonded rings, composed of four [SnCl6]2- anions and four dipH ions, it is isostructural but not isotypical to (dipH)2[IrCl6] (Reiss, 2002). Whilst in (dipH)2[IrCl6] two crystallographically independent layers are present, in the title structure identical crystallographically dependent layers are stacked. The difference between the two structures is in the ring size of 11.9818 (2) / 14.1040 (2) Å (Fig. 1) for the latter and only 10.396 (1) / 13.638 (1) Å for the former and seems to be due to a more simple packing of the bulky isopropyl groups in the title structure. A structural relationship between the (dipH)2[IrCl6] and the K3[MoCl6] types of structures (Amilius et al., 1969; Coll et al., 1987; Hinz et al., 2000) has been discussed (Reiss, 2002). In this structural family, the directly related higher symmetry K2[TeBr6] type (Abrahams et al., 1989; Boysen & Hewat, 1978) exists which could be similarly compared to the title structure.

The Raman spectrum of (dipH)2[SnCl6] shows the Raman-active bands (ν1, ν2 and ν5) of the [SnCl6]2- anions. Additionally a medium-strong band at 170 cm-1 is assigned to the ν4 mode which becomes Raman-active due to the distortion of the [SnCl6]2- anion (Ouasri et al. 2001). Furthermore the band at 77 cm-1 represents a characteristic lattice mode for related compounds (Brown et al., 1970).

Related literature top

For related diisopropylammonium salts, see: Fu et al. (2011); Reiss (1998, 2002, 2012); Reiss & Helmbrecht (2012); Reiss & Meyer (2011). For layered structures, see: Cameron et al. (1983); Holl et al. (1986); Rademeyer et al. (2007). For potassium hexahalogenidometalates, see: Abrahams et al. (1989); Amilius et al. (1969); Boysen et al. (1978); Coll et al. (1987); Hinz et al. (2000). For spectroscopy of hexachloridostannate(IV) salts, see: Brown et al. (1970); Ouasri et al. (2001). For graph-set theory and its applications, see: Etter et al. (1990); Grell et al. (2002).

Experimental top

(dipH)2[SnCl6] was prepared by dissolving 208 mg (2.05 mmol) diisopropylamine and 360 mg (1.02 mmol) tin(IV) chloride in 5 mL of concentrated hydrochloric acid (37 percent). In one to two days under ambient conditions colourless rhombic crystals were obtained by slow evaporation of the solvent. The Raman spectrum was measured using a Bruker MULTIRAM spectrometer (Nd:YAG-Laser at 1064 nm; RT-InGaAs-detector; resolution: 2 cm-1); 4000–70 cm-1: 3140(w), 3087(w), 2994(s), 2982(m, sh), 2970(m), 2948(m), 2908(m), 2700(w), 1574(w), 1479(w), 1458(m), 1411(w), 1342(w), 1296(w), 1196 (w, sh), 1184(w), 1168(w), 1142(w), 1084(w), 968(w), 957(w), 912(w), 880(vw), 824(w), 799(m), 468(w), 439(w), 309(vs; ν1, Sn–Cl), 235 (m, br; ν2, Sn–Cl), 170 (s; ν4, Sn–Cl), 159 (s; ν5, Sn–Cl), 77 (m; lattice mode). – IR spectroscopic data were recorded on a Digilab FT3400 spectrometer using a MIRacle ATR unit (Pike Technologies); 4000–560 cm-1: 3134(vs), 3082(s), 2991(m), 2981(m), 2969(m), 2945(w), 2835(w, br), 2712(w), 2442(w), 2391(w), 1620(w, br), 1573(s), 1472(w), 1466(w), 1458(w), 1425(m), 1395(s), 1384(m), 1358(w), 1342(vw), 1316(w), 1196(w), 1183(m), 1166(w), 1141(m), 1097(m), 969(w), 943(w), 877(w), 824(w), 798(vw).

Refinement top

All hydrogen atoms were identified in difference syntheses. The hydrogen atoms of the methyl groups were idealized and refined using rigid groups allowed to rotate about the C—C bond (AFIX 137 option of the SHELXL97 programme). For each methyl group one common Uiso value was refined. The coordinates of hydrogen atoms belonging to the CH and NH2 groups were refined freely. The Uiso(H) values of the two hydrogen atoms of the NH2 group were refined unrestricted.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : View along [101] of the hydrogen bonded polymer layer of the title structure (Ellipsoids are drawn at the 60% probability level, ' = 2 - x, -y, -z).
[Figure 2] Fig. 2. : Constructor graph (Grell et al., 2002) of that part of the title structure shown in Fig.1.
Bis(diisopropylammonium) hexachloridostannate(IV) top
Crystal data top
(C6H16N)2[SnCl6]F(000) = 540
Mr = 535.81Dx = 1.573 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8237 reflections
a = 9.54362 (13) Åθ = 2.9–36.3°
b = 11.98179 (19) ŵ = 1.83 mm1
c = 9.90669 (14) ÅT = 100 K
β = 92.9406 (14)°Plate, colourless
V = 1131.33 (3) Å30.33 × 0.27 × 0.08 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
4972 independent reflections
Radiation source: fine-focus sealed tube4468 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 16.2711 pixels mm-1θmax = 35.0°, θmin = 2.9°
ω scansh = 1515
Absorption correction: numerical
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1919
Tmin = 0.634, Tmax = 0.922l = 1215
11414 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0186P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4972 reflectionsΔρmax = 0.53 e Å3
120 parametersΔρmin = 0.57 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0041 (4)
Crystal data top
(C6H16N)2[SnCl6]V = 1131.33 (3) Å3
Mr = 535.81Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.54362 (13) ŵ = 1.83 mm1
b = 11.98179 (19) ÅT = 100 K
c = 9.90669 (14) Å0.33 × 0.27 × 0.08 mm
β = 92.9406 (14)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
4972 independent reflections
Absorption correction: numerical
(CrysAlis PRO; Oxford Diffraction, 2009)
4468 reflections with I > 2σ(I)
Tmin = 0.634, Tmax = 0.922Rint = 0.024
11414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.53 e Å3
4972 reflectionsΔρmin = 0.57 e Å3
120 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro (Oxford Diffraction, 2009). Numerical absorption correction based on gaussian integration over a multifaceted crystal model.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn11.00000.00000.00000.01123 (3)
Cl10.92766 (3)0.08742 (2)0.20722 (2)0.01631 (6)
Cl21.11712 (3)0.17373 (2)0.06094 (3)0.01646 (6)
Cl30.78698 (3)0.06606 (2)0.11335 (3)0.01563 (5)
N10.68736 (10)0.27997 (8)0.11589 (10)0.01418 (17)
H110.7445 (17)0.2227 (14)0.1090 (15)0.025 (4)*
H120.6727 (16)0.2895 (13)0.2005 (15)0.025 (4)*
C10.54865 (11)0.24787 (9)0.04603 (11)0.01420 (19)
H10.5701 (16)0.2361 (12)0.0494 (14)0.017*
C20.44162 (12)0.33988 (10)0.06181 (12)0.0186 (2)
H2A0.43520.35710.15590.025 (2)*
H2B0.35170.31550.02510.025 (2)*
H2C0.47020.40530.01440.025 (2)*
C30.50358 (13)0.13875 (10)0.10779 (13)0.0213 (2)
H3A0.57420.08310.09570.025 (2)*
H3B0.41660.11480.06420.025 (2)*
H3C0.49140.14920.20250.025 (2)*
C40.75609 (12)0.38701 (10)0.07441 (12)0.0171 (2)
H40.6925 (16)0.4433 (13)0.0962 (14)0.020*
C50.89127 (14)0.40009 (12)0.16051 (14)0.0272 (3)
H5A0.87150.39480.25430.036 (3)*
H5B0.93210.47160.14320.036 (3)*
H5C0.95570.34220.13840.036 (3)*
C60.78081 (14)0.38572 (12)0.07562 (12)0.0238 (2)
H6A0.83760.32240.09610.035 (3)*
H6B0.82810.45300.09970.035 (3)*
H6C0.69240.38090.12600.035 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01016 (5)0.01241 (5)0.01133 (5)0.00038 (3)0.00261 (3)0.00032 (3)
Cl10.01780 (12)0.01875 (12)0.01260 (10)0.00316 (9)0.00306 (9)0.00157 (9)
Cl20.01694 (12)0.01595 (12)0.01663 (11)0.00356 (9)0.00218 (9)0.00126 (9)
Cl30.01222 (10)0.01879 (12)0.01588 (11)0.00180 (9)0.00070 (9)0.00081 (10)
N10.0125 (4)0.0154 (4)0.0148 (4)0.0002 (3)0.0028 (3)0.0007 (4)
C10.0133 (4)0.0151 (5)0.0143 (4)0.0012 (4)0.0026 (4)0.0016 (4)
C20.0156 (5)0.0187 (5)0.0215 (5)0.0019 (4)0.0005 (4)0.0009 (4)
C30.0207 (5)0.0159 (5)0.0280 (6)0.0038 (4)0.0079 (5)0.0012 (5)
C40.0151 (5)0.0135 (5)0.0231 (5)0.0024 (4)0.0048 (4)0.0016 (4)
C50.0198 (6)0.0310 (7)0.0307 (6)0.0091 (5)0.0012 (5)0.0068 (6)
C60.0235 (6)0.0242 (6)0.0243 (6)0.0051 (5)0.0073 (5)0.0059 (5)
Geometric parameters (Å, º) top
Sn1—Cl3i2.4055 (3)C2—H2B0.9600
Sn1—Cl32.4055 (3)C2—H2C0.9600
Sn1—Cl12.4359 (3)C3—H3A0.9600
Sn1—Cl1i2.4359 (3)C3—H3B0.9600
Sn1—Cl22.4527 (3)C3—H3C0.9600
Sn1—Cl2i2.4527 (3)C4—C61.5168 (16)
N1—C41.5073 (15)C4—C51.5178 (17)
N1—C11.5117 (14)C4—H40.940 (16)
N1—H110.881 (16)C5—H5A0.9600
N1—H120.864 (15)C5—H5B0.9600
C1—C31.5153 (16)C5—H5C0.9600
C1—C21.5164 (16)C6—H6A0.9600
C1—H10.988 (14)C6—H6B0.9600
C2—H2A0.9600C6—H6C0.9600
Cl3i—Sn1—Cl3180.000 (18)H2A—C2—H2B109.5
Cl3i—Sn1—Cl190.994 (9)C1—C2—H2C109.5
Cl3—Sn1—Cl189.006 (9)H2A—C2—H2C109.5
Cl3i—Sn1—Cl1i89.006 (9)H2B—C2—H2C109.5
Cl3—Sn1—Cl1i90.994 (9)C1—C3—H3A109.5
Cl1—Sn1—Cl1i180.000 (13)C1—C3—H3B109.5
Cl3i—Sn1—Cl290.528 (9)H3A—C3—H3B109.5
Cl3—Sn1—Cl289.472 (9)C1—C3—H3C109.5
Cl1—Sn1—Cl289.711 (9)H3A—C3—H3C109.5
Cl1i—Sn1—Cl290.289 (9)H3B—C3—H3C109.5
Cl3i—Sn1—Cl2i89.472 (9)N1—C4—C6110.50 (9)
Cl3—Sn1—Cl2i90.528 (9)N1—C4—C5107.69 (10)
Cl1—Sn1—Cl2i90.289 (9)C6—C4—C5112.41 (10)
Cl1i—Sn1—Cl2i89.711 (9)N1—C4—H4104.7 (9)
Cl2—Sn1—Cl2i180.000 (13)C6—C4—H4111.5 (9)
C4—N1—C1118.34 (9)C5—C4—H4109.7 (9)
C4—N1—H11111.2 (10)C4—C5—H5A109.5
C1—N1—H11107.3 (10)C4—C5—H5B109.5
C4—N1—H12104.2 (11)H5A—C5—H5B109.5
C1—N1—H12107.3 (10)C4—C5—H5C109.5
H11—N1—H12108.0 (14)H5A—C5—H5C109.5
N1—C1—C3107.14 (9)H5B—C5—H5C109.5
N1—C1—C2110.28 (9)C4—C6—H6A109.5
C3—C1—C2112.27 (10)C4—C6—H6B109.5
N1—C1—H1104.8 (9)H6A—C6—H6B109.5
C3—C1—H1109.9 (9)C4—C6—H6C109.5
C2—C1—H1112.1 (9)H6A—C6—H6C109.5
C1—C2—H2A109.5H6B—C6—H6C109.5
C1—C2—H2B109.5
C4—N1—C1—C3179.42 (9)C1—N1—C4—C657.67 (13)
C4—N1—C1—C256.96 (12)C1—N1—C4—C5179.20 (10)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···Cl10.881 (16)2.541 (16)3.3449 (10)152.1 (13)
N1—H12···Cl2ii0.864 (15)2.488 (15)3.3507 (10)176.0 (14)
Symmetry code: (ii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C6H16N)2[SnCl6]
Mr535.81
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.54362 (13), 11.98179 (19), 9.90669 (14)
β (°) 92.9406 (14)
V3)1131.33 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.83
Crystal size (mm)0.33 × 0.27 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionNumerical
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.634, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
11414, 4972, 4468
Rint0.024
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.048, 1.02
No. of reflections4972
No. of parameters120
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.57

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2012), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···Cl10.881 (16)2.541 (16)3.3449 (10)152.1 (13)
N1—H12···Cl2i0.864 (15)2.488 (15)3.3507 (10)176.0 (14)
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank E. Hammes for technical support. We acknowledge the support for the publication fee by the Deutsche Forschungsgemeinschaft (DFG) and the open-access publication fund of the Heinrich-Heine-Universität Düsseldorf.

References

First citationAbrahams, S. C., Ihringer, J. & Marsh, P. (1989). Acta Cryst. B45, 26–34.  CrossRef CAS IUCr Journals Google Scholar
First citationAmilius, Z., van Laar, B. & Rietveld, H. M. (1969). Acta Cryst. B25, 400–402.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBoysen, H. & Hewat, A. W. (1978). Acta Cryst. B34, 1412–1418.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, T. L., McDugle, W. G. Jr & Kent, L. G. (1970). J. Am. Chem. Soc. 92, 3645–3653.  CrossRef CAS Web of Science Google Scholar
First citationCameron, T. S., James, M. A., Knop, O. & Falk, M. (1983). Can. J. Chem. 61, 2192–2198.  CrossRef CAS Web of Science Google Scholar
First citationColl, R. K., Fergusson, J. E., Penfold, B. R., Rankin, D. A. & Robinson, W. T. (1987). Aust. J. Chem. 40, 2115–2122.  CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y. & Xiong, R.-G. (2011). Adv. Mater. 23, 5658–5662.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGrell, J., Bernstein, J. & Tinhofer, G. (2002). Crystallogr. Rev. 8, 1–56.  CrossRef CAS Google Scholar
First citationHinz, D., Gloger, T. & Meyer, G. (2000). Z. Anorg. Allg. Chem. 626, 822–824.  CrossRef CAS Google Scholar
First citationHoll, K. & Thewalt, U. (1986). Z. Naturforsch. Teil B, 41, 581–586.  Google Scholar
First citationOuasri, A., Elyoubi, M. S. D., Guedira, T., Rhandour, A., Mhiri, T. & Daoud, A. (2001). Spectrochim. Acta Part A, 57, 2593–2598.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRademeyer, M., Lemmerer, A. & Billing, D. G. (2007). Acta Cryst. C63, m289–m292.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReiss, G. J. (1998). Acta Cryst. C54, 1489–1491.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReiss, G. J. (2002). Acta Cryst. E58, m47–m50.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReiss, G. J. (2012). J. Struct. Chem. 52, 418–421.  Google Scholar
First citationReiss, G. J. & Helmbrecht, C. (2012). Private communication (deposition number: CCDC 901473). CCDC, Cambridge, England.  Google Scholar
First citationReiss, G. J. & Meyer, M. K. (2011). Acta Cryst. E67, o2169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1402-m1403
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds