metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1430-m1431

Di-μ2-acetato-1:2κ2O:O′;2:3κ2O:O′-bis­­{μ2-4,4′-di­chloro-2,2′-[2,2-di­methyl­propane-1,3-diylbis(nitrilo­methanylyl­­idene)]diphenolato}-1:2κ6O,N,N′,O′:O,O′;2:3κ6O,O′:O,N,N′,O′-tricopper(II)

aDivision of Natural Sciences, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan
*Correspondence e-mail: kubono@cc.osaka-kyoiku.ac.jp

(Received 16 October 2012; accepted 25 October 2012; online 31 October 2012)

The title compound, [Cu3(C19H18Cl2N2O2)2(CH3CO2)2], is a linear homo-trinuclear CuII complex. The central CuII atom is located on a centre of inversion and has a distorted octa­hedral coordination environment formed by six O atoms from two tetra­dentate Schiff base ligands and two bridging acetate ligands. The coordination geometry of the terminal CuII atom is square-pyramidal with a tetra­dentate ligand in the basal plane. The apical site is occupied by one O atom from an acetate ligand. The acetate-bridged Cu⋯Cu distance is 3.0910 (5) Å. An intra­molecular C—H⋯O hydrogen bond forms an S(6) ring motif. The crystal of the trinuclear complex is stabilized by C—H⋯O hydrogen bonds.

Related literature

For the supra­molecular chemistry of related complexes, see: Chen et al. (2010[Chen, B., Xiang, S. & Qian, G. (2010). Acc. Chem. Res. 43, 1115-1124.]); von Richthofen et al. (2009[Richthofen, C.-G. F. von, Stammler, A., Bögge, H., DeGroot, M. W., Long, J. R. & Glaser, T. (2009). Inorg. Chem. 48, 10165-10176.]); Gianneschi et al. (2003[Gianneschi, N. C., Bertin, P. A., Nguyen, S. T., Mirkin, C. A., Zakharov, L. N. & Rheingold, L. (2003). J. Am. Chem. Soc. 125, 10508-10509.]). For related structures, see: Atakol et al. (1999[Atakol, O., Arıcı, C., Ercan, F. & Ülkü, D. (1999). Acta Cryst. C55, 511-513.]); Feng et al. (2007[Feng, Y.-F., Wu, H.-Y., Zhu, B.-L., Wang, S.-R. & Huang, W.-P. (2007). Acta Cryst. E63, m1107-m1108.]); Ray et al. (2009[Ray, A., Sadhukhan, D., Rosair, G. M., Gómez-García, C. J. & Mitra, S. (2009). Polyhedron, 28, 3542-3550.]); Yang et al. (2004[Yang, S.-P., Hong, Y., Chen, H.-M., Zhang, F., Chen, Q.-Q. & Yu, X.-B. (2004). Acta Cryst. E60, m582-m584.]). For background to this work, see: Fukuhara et al. (1990[Fukuhara, C., Tsuneyoshi, K., Matsumoto, N., Kida, S., Mikuriya, M. & Mori, M. (1990). J. Chem. Soc. Dalton Trans. pp. 3473-3479.]); Kargar et al. (2012[Kargar, H., Kia, R., Ganji, F. & Mirkhani, V. (2012). Acta Cryst. E68, m1135.]); Kubono et al. (2009[Kubono, K., Noshita, C., Tani, K. & Yokoi, K. (2009). Acta Cryst. E65, m1685-m1686.], 2010[Kubono, K., Tsuno, Y., Tani, K. & Yokoi, K. (2010). Acta Cryst. E66, m1397-m1398.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]). For analysis of ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu3(C19H18Cl2N2O2)2(C2H3O2)2]

  • Mr = 1063.25

  • Orthorhombic, P b c a

  • a = 19.0732 (18) Å

  • b = 11.6191 (11) Å

  • c = 19.693 (3) Å

  • V = 4364.2 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.75 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.16 mm

Data collection
  • Rigaku AFC7R diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.675, Tmax = 0.756

  • 7325 measured reflections

  • 5006 independent reflections

  • 2796 reflections with F2 > 2.0σ(F2)

  • Rint = 0.024

  • 3 standard reflections every 150 reflections intensity decay: 0.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.105

  • S = 1.00

  • 5006 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O4i 0.93 2.58 3.115 (4) 117
C15—H15⋯O3ii 0.93 2.59 3.289 (4) 133
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Supramolecular complexes, formed by hydrogen bonds or coordination linkages have received much attention, because of their interesting and functional properties such as molecular recognition, magnetism and catalysis (Chen et al., 2010; von Richthofen et al., 2009; Gianneschi et al., 2003). We have previously studied the structures of supramolecular CuII complexes with planar tetradentate piperazine ligands containing fluoro or chloro groups (Kubono et al., 2010; Kubono et al., 2009). These CuII complexes form either a dimer, or a dinuclear structure through C—H···F, or C—H···Cl hydrogen bonds. Complexes with the tetradentate Schiff base ligand, bis(salicylidene)propane-1,3-diamine can form triuclear complexes with coordinating anions or solvents to generate supramolecular architectures (Atakol et al., 1999; Fukuhara et al., 1990; Ray et al., 2009). However no structures of trinuclear complexes with bis-halogenosalicylidene and anionic ligands have been reported. We have attempted to assemble such a species from the mononuclear CuII complex {4,4'-dichloro-2,2'-[2,2-dimethylpropane-1,3- diylbis(nitrilomethanylylidene)]diphenolato}copper(II) (Kargar et al., 2012) and copper(II) acetate as the building blocks. Herein, the structure of the title trinuclear complex is reported.

The central CuII atom is located on a centre of inversion and has a distorted octahedral coordination environment formed by four O atoms from two tetradentate Schiff base ligands in the equatorial plane and an O atom from each of the two bridging acetate ligands in the axial positions. The coordination geometry of the terminal CuII atom is square-pyramidal with the basal plane comprised of two phenolate O and two imine N atoms from a tetradentate ligand. The apical site is occupied by one O atom from a bridging acetate ligand. The terminal CuII atom is located 0.2370 (4) Å from the mean basal plane (N1/N2/O1/O2). The six-membered Cu1/N1/C8/C9/C10/N2 ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975): Q = 0.549 (4) Å, θ = 16.4 (3)° and ϕ = 141.7 (13)°. Bond lengths and angles involving CuII are comparable to those observed in related structures (Atakol et al., 1999). The dihedral angle between the benzene rings (C1–C6 and C14–C19) is 68.73 (12)°. The acetate-bridged Cu···Cu distance is 3.0910 (5) Å, similar to those of related linear homo-trinuclear CuII complexes (Atakol et al., 1999; Feng et al., 2007; Yang et al., 2004). There is an intramolecular C2—H2···O4i hydrogen bond [symmetry code: (i) -x + 1, -y, -z + 1; Table 1], forming a S(6) ring motif (Bernstein et al., 1995). The molecular conformationof the trinuclear complex is stabilized by the intramolecular hydrogen bonds. In the crystal, the trinuclear complex molecules are linked through intermolecular C—H···O hydrogen bonds into a two-dimensional supramolecular network, parallel to the ab plane (Table 1 and Fig. 2).

Related literature top

For the supramolecular chemistry of complexes [similar complexes? related complexes?], see: Chen et al. (2010); von Richthofen et al. (2009); Gianneschi et al. (2003). For related structures, see: Atakol et al. (1999); Feng et al. (2007); Ray et al. (2009); Yang et al. (2004). For other structures [please be more specific], see: Fukuhara et al. (1990); Kargar et al. (2012); Kubono et al., (2009, 2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For analysis of ring conformations, see: Cremer & Pople (1975).

Experimental top

The ligand (0.40 mmol) was dissolved in 20 mL of hot methanol. Then 20 mL of a methanol solution of copper acetate monohydrate (0.60 mmol) were added to this solution.The mixture was stirred for 20 min at 340 K. After a few days at room temperature, green crystals of title complex were obtained. Yield 52%. Analysis calculated for C42H42Cl4Cu3N4O8: C 47.44, H 3.98, N 5.27%; found: C 47.48, H 3.92, N 5.21%.

Refinement top

All H atoms bound to carbon were placed in idealized positions and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecule of the title complex showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are represented by circles of arbitrary size. [symmetry code: (i) -x + 1, -y, -z + 1.]
[Figure 2] Fig. 2. Packing diagram of the title complex, viewed down the c axis. The intramolecular and intermolecular C—H···O hydrogen bonds are shown as dashed lines.
Di-µ2-acetato-1:2κ2O:O';2:3κ2O:O'-bis{µ2-4,4'-dichloro-2,2'-[2,2-dimethylpropane-1,3-diylbis(nitrilomethanylylidene)]diphenolato}-1:2κ6O,N,N',O':O,O'; 2:3κ6O,O':O,N,N',O'-tricopper(II) top
Crystal data top
[Cu3(C19H18Cl2N2O2)2(C2H3O2)2]F(000) = 2164.00
Mr = 1063.25Dx = 1.618 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 19.0732 (18) Åθ = 15.0–17.4°
b = 11.6191 (11) ŵ = 1.75 mm1
c = 19.693 (3) ÅT = 298 K
V = 4364.2 (9) Å3Prismatic, green
Z = 40.23 × 0.20 × 0.16 mm
Data collection top
Rigaku AFC7R
diffractometer
Rint = 0.024
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 1324
Tmin = 0.675, Tmax = 0.756k = 815
7325 measured reflectionsl = 250
5006 independent reflections3 standard reflections every 150 reflections
2796 reflections with F2 > 2.0σ(F2) intensity decay: 0.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.7391P]
where P = (Fo2 + 2Fc2)/3
5006 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.45 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Cu3(C19H18Cl2N2O2)2(C2H3O2)2]V = 4364.2 (9) Å3
Mr = 1063.25Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 19.0732 (18) ŵ = 1.75 mm1
b = 11.6191 (11) ÅT = 298 K
c = 19.693 (3) Å0.23 × 0.20 × 0.16 mm
Data collection top
Rigaku AFC7R
diffractometer
2796 reflections with F2 > 2.0σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.024
Tmin = 0.675, Tmax = 0.7563 standard reflections every 150 reflections
7325 measured reflections intensity decay: 0.5%
5006 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.00Δρmax = 0.39 e Å3
5006 reflectionsΔρmin = 0.45 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.64313 (2)0.07637 (3)0.44178 (2)0.03103 (12)
Cu20.50000.00000.50000.02727 (14)
Cl10.47496 (6)0.12235 (10)0.13509 (5)0.0602 (3)
Cl20.77615 (6)0.36381 (9)0.66639 (5)0.0635 (3)
O10.54772 (11)0.0350 (2)0.40871 (11)0.0336 (5)
O20.61636 (11)0.01062 (19)0.52089 (11)0.0359 (6)
O30.60366 (11)0.23406 (18)0.48839 (11)0.0363 (6)
O40.49941 (11)0.16268 (18)0.52142 (11)0.0341 (5)
N10.66389 (14)0.1401 (2)0.35159 (14)0.0326 (6)
N20.74426 (14)0.0639 (2)0.46700 (14)0.0349 (7)
C10.53159 (17)0.0020 (3)0.34682 (16)0.0302 (7)
C20.47113 (18)0.0639 (3)0.33434 (18)0.0384 (8)
H20.44160.08300.37020.046*
C30.45508 (19)0.1003 (3)0.27000 (18)0.0418 (9)
H30.41520.14470.26280.050*
C40.49741 (19)0.0718 (3)0.21590 (18)0.0405 (9)
C50.55477 (18)0.0033 (3)0.22513 (18)0.0385 (8)
H50.58160.01880.18790.046*
C60.57347 (17)0.0342 (3)0.29035 (17)0.0320 (8)
C70.63314 (18)0.1099 (3)0.29713 (19)0.0374 (8)
H70.65110.14010.25700.045*
C80.72103 (18)0.2234 (3)0.34661 (19)0.0433 (9)
H8A0.71100.28770.37650.052*
H8B0.72290.25270.30050.052*
C90.79266 (17)0.1737 (3)0.36505 (18)0.0390 (9)
C100.79631 (19)0.1469 (3)0.44084 (18)0.0465 (10)
H10A0.84280.11750.45090.056*
H10B0.79080.21850.46560.056*
C110.8086 (2)0.0676 (4)0.3228 (2)0.0584 (11)
H11A0.77640.00720.33450.088*
H11B0.85570.04260.33160.088*
H11C0.80380.08590.27550.088*
C120.8473 (2)0.2683 (4)0.3510 (2)0.0592 (12)
H12A0.89280.24180.36460.089*
H12B0.83530.33620.37630.089*
H12C0.84770.28590.30340.089*
C130.76749 (18)0.0137 (3)0.50710 (17)0.0407 (9)
H130.81600.01810.51150.049*
C140.72733 (18)0.0952 (3)0.54648 (16)0.0345 (8)
C150.76437 (19)0.1790 (3)0.58283 (18)0.0426 (9)
H150.81300.18240.57950.051*
C160.72974 (19)0.2558 (3)0.62314 (18)0.0416 (9)
C170.65761 (19)0.2510 (3)0.63013 (18)0.0434 (9)
H170.63460.30270.65850.052*
C180.62008 (19)0.1695 (3)0.59500 (17)0.0408 (9)
H180.57150.16770.59930.049*
C190.65340 (17)0.0887 (3)0.55256 (16)0.0312 (7)
C200.54487 (18)0.2416 (3)0.51585 (16)0.0312 (7)
C210.5241 (2)0.3555 (3)0.5462 (2)0.0532 (11)
H21A0.55840.41260.53450.080*
H21B0.52140.34840.59470.080*
H21C0.47920.37810.52870.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0229 (2)0.0343 (2)0.0359 (2)0.00107 (18)0.00405 (18)0.00024 (19)
Cu20.0223 (3)0.0305 (3)0.0290 (3)0.0010 (2)0.0029 (2)0.0011 (2)
Cl10.0663 (7)0.0744 (7)0.0398 (5)0.0041 (6)0.0070 (5)0.0176 (5)
Cl20.0759 (8)0.0619 (7)0.0526 (6)0.0295 (6)0.0149 (6)0.0059 (5)
O10.0232 (12)0.0450 (13)0.0324 (13)0.0047 (11)0.0016 (10)0.0044 (11)
O20.0274 (12)0.0403 (14)0.0400 (13)0.0061 (11)0.0050 (10)0.0114 (12)
O30.0290 (12)0.0341 (13)0.0459 (15)0.0015 (11)0.0017 (11)0.0057 (11)
O40.0318 (13)0.0287 (12)0.0419 (14)0.0008 (11)0.0038 (11)0.0014 (10)
N10.0263 (15)0.0311 (15)0.0404 (17)0.0023 (12)0.0009 (13)0.0044 (13)
N20.0267 (15)0.0431 (18)0.0348 (15)0.0058 (13)0.0037 (13)0.0025 (14)
C10.0291 (18)0.0295 (18)0.0320 (18)0.0061 (15)0.0024 (15)0.0003 (15)
C20.0329 (19)0.045 (2)0.0372 (19)0.0049 (16)0.0018 (16)0.0017 (17)
C30.036 (2)0.046 (2)0.044 (2)0.0065 (18)0.0038 (18)0.0029 (18)
C40.042 (2)0.046 (2)0.034 (2)0.0053 (19)0.0068 (16)0.0066 (17)
C50.034 (2)0.046 (2)0.0355 (19)0.0010 (18)0.0019 (16)0.0012 (17)
C60.0263 (18)0.0307 (18)0.0390 (19)0.0015 (14)0.0011 (15)0.0007 (15)
C70.035 (2)0.0363 (19)0.041 (2)0.0015 (16)0.0056 (16)0.0098 (17)
C80.041 (2)0.036 (2)0.053 (2)0.0105 (17)0.0012 (18)0.0059 (18)
C90.029 (2)0.042 (2)0.046 (2)0.0053 (16)0.0060 (17)0.0026 (17)
C100.035 (2)0.056 (2)0.048 (2)0.0185 (18)0.0001 (18)0.0040 (19)
C110.048 (3)0.062 (3)0.065 (3)0.000 (2)0.020 (2)0.009 (2)
C120.042 (2)0.068 (3)0.067 (3)0.024 (2)0.002 (2)0.018 (2)
C130.0235 (18)0.059 (3)0.039 (2)0.0007 (17)0.0005 (15)0.0009 (19)
C140.0304 (19)0.043 (2)0.0300 (18)0.0035 (16)0.0013 (14)0.0050 (16)
C150.031 (2)0.056 (2)0.040 (2)0.0092 (18)0.0029 (16)0.0001 (19)
C160.045 (2)0.042 (2)0.037 (2)0.0148 (19)0.0076 (17)0.0029 (17)
C170.050 (2)0.043 (2)0.038 (2)0.0009 (19)0.0065 (18)0.0115 (17)
C180.032 (2)0.047 (2)0.043 (2)0.0013 (17)0.0041 (17)0.0103 (18)
C190.0289 (18)0.0321 (18)0.0325 (18)0.0001 (15)0.0003 (14)0.0026 (15)
C200.0343 (18)0.0285 (18)0.0309 (19)0.0034 (15)0.0048 (15)0.0007 (14)
C210.046 (2)0.039 (2)0.075 (3)0.0012 (19)0.014 (2)0.019 (2)
Geometric parameters (Å, º) top
Cu1—O21.926 (2)C7—H70.9300
Cu1—N11.965 (3)C8—C91.527 (5)
Cu1—O11.992 (2)C8—H8A0.9700
Cu1—N21.997 (3)C8—H8B0.9700
Cu1—O32.183 (2)C9—C111.518 (5)
Cu2—O4i1.937 (2)C9—C101.526 (5)
Cu2—O41.937 (2)C9—C121.540 (5)
Cu2—O12.056 (2)C10—H10A0.9700
Cu2—O1i2.056 (2)C10—H10B0.9700
Cu2—O2i2.260 (2)C11—H11A0.9600
Cu2—O22.260 (2)C11—H11B0.9600
Cl1—C41.750 (4)C11—H11C0.9600
Cl2—C161.756 (4)C12—H12A0.9600
O1—C11.314 (4)C12—H12B0.9600
O2—C191.308 (4)C12—H12C0.9600
O3—C201.248 (4)C13—C141.444 (5)
O4—C201.267 (4)C13—H130.9300
N1—C71.272 (4)C14—C151.400 (5)
N1—C81.461 (4)C14—C191.417 (4)
N2—C131.277 (4)C15—C161.364 (5)
N2—C101.477 (4)C15—H150.9300
C1—C21.406 (5)C16—C171.384 (5)
C1—C61.419 (4)C17—C181.374 (4)
C2—C31.371 (5)C17—H170.9300
C2—H20.9300C18—C191.408 (4)
C3—C41.377 (5)C18—H180.9300
C3—H30.9300C20—C211.504 (5)
C4—C51.365 (5)C21—H21A0.9600
C5—C61.402 (4)C21—H21B0.9600
C5—H50.9300C21—H21C0.9600
C6—C71.445 (5)
O2—Cu1—N1169.27 (11)N1—C8—C9113.6 (3)
O2—Cu1—O184.00 (9)N1—C8—H8A108.8
N1—Cu1—O188.83 (10)C9—C8—H8A108.8
O2—Cu1—N290.96 (11)N1—C8—H8B108.8
N1—Cu1—N293.31 (11)C9—C8—H8B108.8
O1—Cu1—N2161.12 (11)H8A—C8—H8B107.7
O2—Cu1—O390.51 (9)C11—C9—C10111.2 (3)
N1—Cu1—O397.66 (10)C11—C9—C8110.8 (3)
O1—Cu1—O391.44 (9)C10—C9—C8110.5 (3)
N2—Cu1—O3106.83 (10)C11—C9—C12110.2 (3)
O4i—Cu2—O4180.00 (13)C10—C9—C12106.9 (3)
O4i—Cu2—O189.99 (9)C8—C9—C12107.0 (3)
O4—Cu2—O190.01 (9)N2—C10—C9116.3 (3)
O4i—Cu2—O1i90.01 (9)N2—C10—H10A108.2
O4—Cu2—O1i89.99 (9)C9—C10—H10A108.2
O1—Cu2—O1i180.00 (10)N2—C10—H10B108.2
O4i—Cu2—O2i91.11 (8)C9—C10—H10B108.2
O4—Cu2—O2i88.89 (8)H10A—C10—H10B107.4
O1—Cu2—O2i105.35 (8)C9—C11—H11A109.5
O1i—Cu2—O2i74.65 (8)C9—C11—H11B109.5
O4i—Cu2—O288.89 (8)H11A—C11—H11B109.5
O4—Cu2—O291.11 (8)C9—C11—H11C109.5
O1—Cu2—O274.65 (8)H11A—C11—H11C109.5
O1i—Cu2—O2105.35 (8)H11B—C11—H11C109.5
O2i—Cu2—O2180.0C9—C12—H12A109.5
C1—O1—Cu1126.0 (2)C9—C12—H12B109.5
C1—O1—Cu2130.5 (2)H12A—C12—H12B109.5
Cu1—O1—Cu299.58 (9)C9—C12—H12C109.5
C19—O2—Cu1127.3 (2)H12A—C12—H12C109.5
C19—O2—Cu2130.9 (2)H12B—C12—H12C109.5
Cu1—O2—Cu294.85 (9)N2—C13—C14127.6 (3)
C20—O3—Cu1123.5 (2)N2—C13—H13116.2
C20—O4—Cu2133.1 (2)C14—C13—H13116.2
C7—N1—C8118.1 (3)C15—C14—C19119.7 (3)
C7—N1—Cu1124.4 (2)C15—C14—C13117.6 (3)
C8—N1—Cu1117.4 (2)C19—C14—C13122.6 (3)
C13—N2—C10116.3 (3)C16—C15—C14120.5 (3)
C13—N2—Cu1122.7 (2)C16—C15—H15119.7
C10—N2—Cu1121.0 (2)C14—C15—H15119.7
O1—C1—C2120.9 (3)C15—C16—C17120.9 (3)
O1—C1—C6121.2 (3)C15—C16—Cl2120.3 (3)
C2—C1—C6117.9 (3)C17—C16—Cl2118.8 (3)
C3—C2—C1120.9 (3)C18—C17—C16119.7 (3)
C3—C2—H2119.6C18—C17—H17120.1
C1—C2—H2119.6C16—C17—H17120.1
C2—C3—C4120.7 (3)C17—C18—C19121.5 (3)
C2—C3—H3119.7C17—C18—H18119.2
C4—C3—H3119.7C19—C18—H18119.2
C5—C4—C3120.5 (3)O2—C19—C18120.1 (3)
C5—C4—Cl1120.9 (3)O2—C19—C14122.3 (3)
C3—C4—Cl1118.7 (3)C18—C19—C14117.6 (3)
C4—C5—C6120.4 (3)O3—C20—O4127.0 (3)
C4—C5—H5119.8O3—C20—C21118.1 (3)
C6—C5—H5119.8O4—C20—C21115.0 (3)
C5—C6—C1119.5 (3)C20—C21—H21A109.5
C5—C6—C7118.3 (3)C20—C21—H21B109.5
C1—C6—C7122.1 (3)H21A—C21—H21B109.5
N1—C7—C6127.5 (3)C20—C21—H21C109.5
N1—C7—H7116.2H21A—C21—H21C109.5
C6—C7—H7116.2H21B—C21—H21C109.5
O2—Cu1—O1—C1137.9 (3)Cu1—O1—C1—C2156.4 (2)
N1—Cu1—O1—C134.1 (3)Cu2—O1—C1—C23.4 (5)
N2—Cu1—O1—C162.7 (4)Cu1—O1—C1—C625.2 (4)
O3—Cu1—O1—C1131.8 (2)Cu2—O1—C1—C6178.2 (2)
O2—Cu1—O1—Cu221.70 (10)O1—C1—C2—C3178.6 (3)
N1—Cu1—O1—Cu2166.30 (11)C6—C1—C2—C33.0 (5)
N2—Cu1—O1—Cu296.9 (3)C1—C2—C3—C40.9 (6)
O3—Cu1—O1—Cu268.66 (10)C2—C3—C4—C52.3 (6)
O4i—Cu2—O1—C150.4 (3)C2—C3—C4—Cl1179.1 (3)
O4—Cu2—O1—C1129.6 (3)C3—C4—C5—C63.3 (5)
O2i—Cu2—O1—C140.8 (3)Cl1—C4—C5—C6178.2 (3)
O2—Cu2—O1—C1139.2 (3)C4—C5—C6—C11.1 (5)
O4i—Cu2—O1—Cu1107.81 (10)C4—C5—C6—C7177.8 (3)
O4—Cu2—O1—Cu172.19 (10)O1—C1—C6—C5179.6 (3)
O2i—Cu2—O1—Cu1161.04 (9)C2—C1—C6—C52.0 (5)
O2—Cu2—O1—Cu118.96 (9)O1—C1—C6—C73.8 (5)
N1—Cu1—O2—C1985.3 (6)C2—C1—C6—C7174.6 (3)
O1—Cu1—O2—C19133.6 (3)C8—N1—C7—C6176.5 (3)
N2—Cu1—O2—C1928.2 (3)Cu1—N1—C7—C66.9 (5)
O3—Cu1—O2—C19135.0 (3)C5—C6—C7—N1169.5 (3)
N1—Cu1—O2—Cu267.7 (5)C1—C6—C7—N113.9 (5)
O1—Cu1—O2—Cu219.43 (9)C7—N1—C8—C9113.3 (4)
N2—Cu1—O2—Cu2178.80 (10)Cu1—N1—C8—C963.6 (4)
O3—Cu1—O2—Cu271.96 (9)N1—C8—C9—C1154.7 (4)
O4i—Cu2—O2—C1941.8 (3)N1—C8—C9—C1069.0 (4)
O4—Cu2—O2—C19138.2 (3)N1—C8—C9—C12174.9 (3)
O1—Cu2—O2—C19132.1 (3)C13—N2—C10—C9134.9 (3)
O1i—Cu2—O2—C1947.9 (3)Cu1—N2—C10—C946.4 (4)
O4i—Cu2—O2—Cu1109.72 (10)C11—C9—C10—N264.1 (4)
O4—Cu2—O2—Cu170.28 (10)C8—C9—C10—N259.5 (4)
O1—Cu2—O2—Cu119.42 (9)C12—C9—C10—N2175.6 (3)
O1i—Cu2—O2—Cu1160.58 (9)C10—N2—C13—C14171.2 (3)
O2—Cu1—O3—C2048.2 (2)Cu1—N2—C13—C147.4 (5)
N1—Cu1—O3—C20124.9 (2)N2—C13—C14—C15174.8 (3)
O1—Cu1—O3—C2035.9 (2)N2—C13—C14—C199.1 (6)
N2—Cu1—O3—C20139.3 (2)C19—C14—C15—C161.2 (5)
O1—Cu2—O4—C2044.3 (3)C13—C14—C15—C16177.4 (3)
O1i—Cu2—O4—C20135.7 (3)C14—C15—C16—C171.4 (6)
O2i—Cu2—O4—C20149.7 (3)C14—C15—C16—Cl2177.8 (3)
O2—Cu2—O4—C2030.3 (3)C15—C16—C17—C181.4 (6)
O2—Cu1—N1—C723.8 (7)Cl2—C16—C17—C18177.9 (3)
O1—Cu1—N1—C724.2 (3)C16—C17—C18—C191.1 (5)
N2—Cu1—N1—C7137.0 (3)Cu1—O2—C19—C18159.7 (2)
O3—Cu1—N1—C7115.5 (3)Cu2—O2—C19—C1816.4 (4)
O2—Cu1—N1—C8152.9 (5)Cu1—O2—C19—C1420.9 (4)
O1—Cu1—N1—C8159.1 (2)Cu2—O2—C19—C14164.2 (2)
N2—Cu1—N1—C839.6 (2)C17—C18—C19—O2178.6 (3)
O3—Cu1—N1—C867.8 (2)C17—C18—C19—C140.9 (5)
O2—Cu1—N2—C1320.7 (3)C15—C14—C19—O2178.5 (3)
N1—Cu1—N2—C13149.5 (3)C13—C14—C19—O22.5 (5)
O1—Cu1—N2—C1353.4 (5)C15—C14—C19—C180.9 (5)
O3—Cu1—N2—C13111.5 (3)C13—C14—C19—C18176.9 (3)
O2—Cu1—N2—C10157.9 (2)Cu1—O3—C20—O40.0 (5)
N1—Cu1—N2—C1031.9 (3)Cu1—O3—C20—C21179.9 (2)
O1—Cu1—N2—C10128.0 (3)Cu2—O4—C20—O36.2 (5)
O3—Cu1—N2—C1067.1 (3)Cu2—O4—C20—C21173.7 (2)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.932.583.115 (4)117
C15—H15···O3ii0.932.593.289 (4)133
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Cu3(C19H18Cl2N2O2)2(C2H3O2)2]
Mr1063.25
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)19.0732 (18), 11.6191 (11), 19.693 (3)
V3)4364.2 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.75
Crystal size (mm)0.23 × 0.20 × 0.16
Data collection
DiffractometerRigaku AFC7R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.675, 0.756
No. of measured, independent and
observed [F2 > 2.0σ(F2)] reflections
7325, 5006, 2796
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.105, 1.00
No. of reflections5006
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.45

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2010), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.932.583.115 (4)117
C15—H15···O3ii0.932.593.289 (4)133
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y1/2, z.
 

Acknowledgements

This study was supported financially in part by Grants-in-Aid for Scientific Research (grant Nos. 20550075 and 23550094) from the Japan Society for the Promotion of Science.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAtakol, O., Arıcı, C., Ercan, F. & Ülkü, D. (1999). Acta Cryst. C55, 511–513.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationChen, B., Xiang, S. & Qian, G. (2010). Acc. Chem. Res. 43, 1115–1124.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFeng, Y.-F., Wu, H.-Y., Zhu, B.-L., Wang, S.-R. & Huang, W.-P. (2007). Acta Cryst. E63, m1107–m1108.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFukuhara, C., Tsuneyoshi, K., Matsumoto, N., Kida, S., Mikuriya, M. & Mori, M. (1990). J. Chem. Soc. Dalton Trans. pp. 3473–3479.  CSD CrossRef Web of Science Google Scholar
First citationGianneschi, N. C., Bertin, P. A., Nguyen, S. T., Mirkin, C. A., Zakharov, L. N. & Rheingold, L. (2003). J. Am. Chem. Soc. 125, 10508–10509.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKargar, H., Kia, R., Ganji, F. & Mirkhani, V. (2012). Acta Cryst. E68, m1135.  CSD CrossRef IUCr Journals Google Scholar
First citationKubono, K., Noshita, C., Tani, K. & Yokoi, K. (2009). Acta Cryst. E65, m1685–m1686.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKubono, K., Tsuno, Y., Tani, K. & Yokoi, K. (2010). Acta Cryst. E66, m1397–m1398.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRay, A., Sadhukhan, D., Rosair, G. M., Gómez-García, C. J. & Mitra, S. (2009). Polyhedron, 28, 3542–3550.  Web of Science CrossRef CAS Google Scholar
First citationRichthofen, C.-G. F. von, Stammler, A., Bögge, H., DeGroot, M. W., Long, J. R. & Glaser, T. (2009). Inorg. Chem. 48, 10165–10176.  PubMed Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, S.-P., Hong, Y., Chen, H.-M., Zhang, F., Chen, Q.-Q. & Yu, X.-B. (2004). Acta Cryst. E60, m582–m584.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages m1430-m1431
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds