metal-organic compounds
Di-μ2-acetato-1:2κ2O:O′;2:3κ2O:O′-bis{μ2-4,4′-dichloro-2,2′-[2,2-dimethylpropane-1,3-diylbis(nitrilomethanylylidene)]diphenolato}-1:2κ6O,N,N′,O′:O,O′;2:3κ6O,O′:O,N,N′,O′-tricopper(II)
aDivision of Natural Sciences, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan
*Correspondence e-mail: kubono@cc.osaka-kyoiku.ac.jp
The title compound, [Cu3(C19H18Cl2N2O2)2(CH3CO2)2], is a linear homo-trinuclear CuII complex. The central CuII atom is located on a centre of inversion and has a distorted octahedral coordination environment formed by six O atoms from two tetradentate Schiff base ligands and two bridging acetate ligands. The coordination geometry of the terminal CuII atom is square-pyramidal with a tetradentate ligand in the basal plane. The apical site is occupied by one O atom from an acetate ligand. The acetate-bridged Cu⋯Cu distance is 3.0910 (5) Å. An intramolecular C—H⋯O hydrogen bond forms an S(6) ring motif. The crystal of the trinuclear complex is stabilized by C—H⋯O hydrogen bonds.
Related literature
For the supramolecular chemistry of related complexes, see: Chen et al. (2010); von Richthofen et al. (2009); Gianneschi et al. (2003). For related structures, see: Atakol et al. (1999); Feng et al. (2007); Ray et al. (2009); Yang et al. (2004). For background to this work, see: Fukuhara et al. (1990); Kargar et al. (2012); Kubono et al. (2009, 2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For analysis of ring conformations, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 2006); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: CrystalStructure.
Supporting information
10.1107/S1600536812044315/mw2092sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812044315/mw2092Isup2.hkl
The ligand (0.40 mmol) was dissolved in 20 mL of hot methanol. Then 20 mL of a methanol solution of copper acetate monohydrate (0.60 mmol) were added to this solution.The mixture was stirred for 20 min at 340 K. After a few days at room temperature, green crystals of title complex were obtained. Yield 52%. Analysis calculated for C42H42Cl4Cu3N4O8: C 47.44, H 3.98, N 5.27%; found: C 47.48, H 3.92, N 5.21%.
All H atoms bound to carbon were placed in idealized positions and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 2006); cell
PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).[Cu3(C19H18Cl2N2O2)2(C2H3O2)2] | F(000) = 2164.00 |
Mr = 1063.25 | Dx = 1.618 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 25 reflections |
a = 19.0732 (18) Å | θ = 15.0–17.4° |
b = 11.6191 (11) Å | µ = 1.75 mm−1 |
c = 19.693 (3) Å | T = 298 K |
V = 4364.2 (9) Å3 | Prismatic, green |
Z = 4 | 0.23 × 0.20 × 0.16 mm |
Rigaku AFC7R diffractometer | Rint = 0.024 |
ω–2θ scans | θmax = 27.5° |
Absorption correction: ψ scan (North et al., 1968) | h = −13→24 |
Tmin = 0.675, Tmax = 0.756 | k = −8→15 |
7325 measured reflections | l = −25→0 |
5006 independent reflections | 3 standard reflections every 150 reflections |
2796 reflections with F2 > 2.0σ(F2) | intensity decay: 0.5% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0428P)2 + 0.7391P] where P = (Fo2 + 2Fc2)/3 |
5006 reflections | (Δ/σ)max = 0.001 |
280 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.45 e Å−3 |
Primary atom site location: structure-invariant direct methods |
[Cu3(C19H18Cl2N2O2)2(C2H3O2)2] | V = 4364.2 (9) Å3 |
Mr = 1063.25 | Z = 4 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 19.0732 (18) Å | µ = 1.75 mm−1 |
b = 11.6191 (11) Å | T = 298 K |
c = 19.693 (3) Å | 0.23 × 0.20 × 0.16 mm |
Rigaku AFC7R diffractometer | 2796 reflections with F2 > 2.0σ(F2) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.024 |
Tmin = 0.675, Tmax = 0.756 | 3 standard reflections every 150 reflections |
7325 measured reflections | intensity decay: 0.5% |
5006 independent reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.39 e Å−3 |
5006 reflections | Δρmin = −0.45 e Å−3 |
280 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.64313 (2) | 0.07637 (3) | 0.44178 (2) | 0.03103 (12) | |
Cu2 | 0.5000 | 0.0000 | 0.5000 | 0.02727 (14) | |
Cl1 | 0.47496 (6) | −0.12235 (10) | 0.13509 (5) | 0.0602 (3) | |
Cl2 | 0.77615 (6) | −0.36381 (9) | 0.66639 (5) | 0.0635 (3) | |
O1 | 0.54772 (11) | 0.0350 (2) | 0.40871 (11) | 0.0336 (5) | |
O2 | 0.61636 (11) | −0.01062 (19) | 0.52089 (11) | 0.0359 (6) | |
O3 | 0.60366 (11) | 0.23406 (18) | 0.48839 (11) | 0.0363 (6) | |
O4 | 0.49941 (11) | 0.16268 (18) | 0.52142 (11) | 0.0341 (5) | |
N1 | 0.66389 (14) | 0.1401 (2) | 0.35159 (14) | 0.0326 (6) | |
N2 | 0.74426 (14) | 0.0639 (2) | 0.46700 (14) | 0.0349 (7) | |
C1 | 0.53159 (17) | 0.0020 (3) | 0.34682 (16) | 0.0302 (7) | |
C2 | 0.47113 (18) | −0.0639 (3) | 0.33434 (18) | 0.0384 (8) | |
H2 | 0.4416 | −0.0830 | 0.3702 | 0.046* | |
C3 | 0.45508 (19) | −0.1003 (3) | 0.27000 (18) | 0.0418 (9) | |
H3 | 0.4152 | −0.1447 | 0.2628 | 0.050* | |
C4 | 0.49741 (19) | −0.0718 (3) | 0.21590 (18) | 0.0405 (9) | |
C5 | 0.55477 (18) | −0.0033 (3) | 0.22513 (18) | 0.0385 (8) | |
H5 | 0.5816 | 0.0188 | 0.1879 | 0.046* | |
C6 | 0.57347 (17) | 0.0342 (3) | 0.29035 (17) | 0.0320 (8) | |
C7 | 0.63314 (18) | 0.1099 (3) | 0.29713 (19) | 0.0374 (8) | |
H7 | 0.6511 | 0.1401 | 0.2570 | 0.045* | |
C8 | 0.72103 (18) | 0.2234 (3) | 0.34661 (19) | 0.0433 (9) | |
H8A | 0.7110 | 0.2877 | 0.3765 | 0.052* | |
H8B | 0.7229 | 0.2527 | 0.3005 | 0.052* | |
C9 | 0.79266 (17) | 0.1737 (3) | 0.36505 (18) | 0.0390 (9) | |
C10 | 0.79631 (19) | 0.1469 (3) | 0.44084 (18) | 0.0465 (10) | |
H10A | 0.8428 | 0.1175 | 0.4509 | 0.056* | |
H10B | 0.7908 | 0.2185 | 0.4656 | 0.056* | |
C11 | 0.8086 (2) | 0.0676 (4) | 0.3228 (2) | 0.0584 (11) | |
H11A | 0.7764 | 0.0072 | 0.3345 | 0.088* | |
H11B | 0.8557 | 0.0426 | 0.3316 | 0.088* | |
H11C | 0.8038 | 0.0859 | 0.2755 | 0.088* | |
C12 | 0.8473 (2) | 0.2683 (4) | 0.3510 (2) | 0.0592 (12) | |
H12A | 0.8928 | 0.2418 | 0.3646 | 0.089* | |
H12B | 0.8353 | 0.3362 | 0.3763 | 0.089* | |
H12C | 0.8477 | 0.2859 | 0.3034 | 0.089* | |
C13 | 0.76749 (18) | −0.0137 (3) | 0.50710 (17) | 0.0407 (9) | |
H13 | 0.8160 | −0.0181 | 0.5115 | 0.049* | |
C14 | 0.72733 (18) | −0.0952 (3) | 0.54648 (16) | 0.0345 (8) | |
C15 | 0.76437 (19) | −0.1790 (3) | 0.58283 (18) | 0.0426 (9) | |
H15 | 0.8130 | −0.1824 | 0.5795 | 0.051* | |
C16 | 0.72974 (19) | −0.2558 (3) | 0.62314 (18) | 0.0416 (9) | |
C17 | 0.65761 (19) | −0.2510 (3) | 0.63013 (18) | 0.0434 (9) | |
H17 | 0.6346 | −0.3027 | 0.6585 | 0.052* | |
C18 | 0.62008 (19) | −0.1695 (3) | 0.59500 (17) | 0.0408 (9) | |
H18 | 0.5715 | −0.1677 | 0.5993 | 0.049* | |
C19 | 0.65340 (17) | −0.0887 (3) | 0.55256 (16) | 0.0312 (7) | |
C20 | 0.54487 (18) | 0.2416 (3) | 0.51585 (16) | 0.0312 (7) | |
C21 | 0.5241 (2) | 0.3555 (3) | 0.5462 (2) | 0.0532 (11) | |
H21A | 0.5584 | 0.4126 | 0.5345 | 0.080* | |
H21B | 0.5214 | 0.3484 | 0.5947 | 0.080* | |
H21C | 0.4792 | 0.3781 | 0.5287 | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0229 (2) | 0.0343 (2) | 0.0359 (2) | −0.00107 (18) | 0.00405 (18) | 0.00024 (19) |
Cu2 | 0.0223 (3) | 0.0305 (3) | 0.0290 (3) | −0.0010 (2) | 0.0029 (2) | −0.0011 (2) |
Cl1 | 0.0663 (7) | 0.0744 (7) | 0.0398 (5) | −0.0041 (6) | −0.0070 (5) | −0.0176 (5) |
Cl2 | 0.0759 (8) | 0.0619 (7) | 0.0526 (6) | 0.0295 (6) | −0.0149 (6) | 0.0059 (5) |
O1 | 0.0232 (12) | 0.0450 (13) | 0.0324 (13) | −0.0047 (11) | 0.0016 (10) | −0.0044 (11) |
O2 | 0.0274 (12) | 0.0403 (14) | 0.0400 (13) | 0.0061 (11) | 0.0050 (10) | 0.0114 (12) |
O3 | 0.0290 (12) | 0.0341 (13) | 0.0459 (15) | −0.0015 (11) | 0.0017 (11) | −0.0057 (11) |
O4 | 0.0318 (13) | 0.0287 (12) | 0.0419 (14) | −0.0008 (11) | 0.0038 (11) | −0.0014 (10) |
N1 | 0.0263 (15) | 0.0311 (15) | 0.0404 (17) | −0.0023 (12) | 0.0009 (13) | 0.0044 (13) |
N2 | 0.0267 (15) | 0.0431 (18) | 0.0348 (15) | −0.0058 (13) | 0.0037 (13) | −0.0025 (14) |
C1 | 0.0291 (18) | 0.0295 (18) | 0.0320 (18) | 0.0061 (15) | −0.0024 (15) | 0.0003 (15) |
C2 | 0.0329 (19) | 0.045 (2) | 0.0372 (19) | −0.0049 (16) | 0.0018 (16) | −0.0017 (17) |
C3 | 0.036 (2) | 0.046 (2) | 0.044 (2) | −0.0065 (18) | −0.0038 (18) | −0.0029 (18) |
C4 | 0.042 (2) | 0.046 (2) | 0.034 (2) | 0.0053 (19) | −0.0068 (16) | −0.0066 (17) |
C5 | 0.034 (2) | 0.046 (2) | 0.0355 (19) | 0.0010 (18) | 0.0019 (16) | 0.0012 (17) |
C6 | 0.0263 (18) | 0.0307 (18) | 0.0390 (19) | 0.0015 (14) | 0.0011 (15) | 0.0007 (15) |
C7 | 0.035 (2) | 0.0363 (19) | 0.041 (2) | 0.0015 (16) | 0.0056 (16) | 0.0098 (17) |
C8 | 0.041 (2) | 0.036 (2) | 0.053 (2) | −0.0105 (17) | −0.0012 (18) | 0.0059 (18) |
C9 | 0.029 (2) | 0.042 (2) | 0.046 (2) | −0.0053 (16) | 0.0060 (17) | 0.0026 (17) |
C10 | 0.035 (2) | 0.056 (2) | 0.048 (2) | −0.0185 (18) | −0.0001 (18) | 0.0040 (19) |
C11 | 0.048 (3) | 0.062 (3) | 0.065 (3) | 0.000 (2) | 0.020 (2) | −0.009 (2) |
C12 | 0.042 (2) | 0.068 (3) | 0.067 (3) | −0.024 (2) | 0.002 (2) | 0.018 (2) |
C13 | 0.0235 (18) | 0.059 (3) | 0.039 (2) | −0.0007 (17) | 0.0005 (15) | −0.0009 (19) |
C14 | 0.0304 (19) | 0.043 (2) | 0.0300 (18) | 0.0035 (16) | 0.0013 (14) | −0.0050 (16) |
C15 | 0.031 (2) | 0.056 (2) | 0.040 (2) | 0.0092 (18) | −0.0029 (16) | −0.0001 (19) |
C16 | 0.045 (2) | 0.042 (2) | 0.037 (2) | 0.0148 (19) | −0.0076 (17) | −0.0029 (17) |
C17 | 0.050 (2) | 0.043 (2) | 0.038 (2) | 0.0009 (19) | −0.0065 (18) | 0.0115 (17) |
C18 | 0.032 (2) | 0.047 (2) | 0.043 (2) | 0.0013 (17) | 0.0041 (17) | 0.0103 (18) |
C19 | 0.0289 (18) | 0.0321 (18) | 0.0325 (18) | −0.0001 (15) | 0.0003 (14) | −0.0026 (15) |
C20 | 0.0343 (18) | 0.0285 (18) | 0.0309 (19) | 0.0034 (15) | −0.0048 (15) | 0.0007 (14) |
C21 | 0.046 (2) | 0.039 (2) | 0.075 (3) | 0.0012 (19) | 0.014 (2) | −0.019 (2) |
Cu1—O2 | 1.926 (2) | C7—H7 | 0.9300 |
Cu1—N1 | 1.965 (3) | C8—C9 | 1.527 (5) |
Cu1—O1 | 1.992 (2) | C8—H8A | 0.9700 |
Cu1—N2 | 1.997 (3) | C8—H8B | 0.9700 |
Cu1—O3 | 2.183 (2) | C9—C11 | 1.518 (5) |
Cu2—O4i | 1.937 (2) | C9—C10 | 1.526 (5) |
Cu2—O4 | 1.937 (2) | C9—C12 | 1.540 (5) |
Cu2—O1 | 2.056 (2) | C10—H10A | 0.9700 |
Cu2—O1i | 2.056 (2) | C10—H10B | 0.9700 |
Cu2—O2i | 2.260 (2) | C11—H11A | 0.9600 |
Cu2—O2 | 2.260 (2) | C11—H11B | 0.9600 |
Cl1—C4 | 1.750 (4) | C11—H11C | 0.9600 |
Cl2—C16 | 1.756 (4) | C12—H12A | 0.9600 |
O1—C1 | 1.314 (4) | C12—H12B | 0.9600 |
O2—C19 | 1.308 (4) | C12—H12C | 0.9600 |
O3—C20 | 1.248 (4) | C13—C14 | 1.444 (5) |
O4—C20 | 1.267 (4) | C13—H13 | 0.9300 |
N1—C7 | 1.272 (4) | C14—C15 | 1.400 (5) |
N1—C8 | 1.461 (4) | C14—C19 | 1.417 (4) |
N2—C13 | 1.277 (4) | C15—C16 | 1.364 (5) |
N2—C10 | 1.477 (4) | C15—H15 | 0.9300 |
C1—C2 | 1.406 (5) | C16—C17 | 1.384 (5) |
C1—C6 | 1.419 (4) | C17—C18 | 1.374 (4) |
C2—C3 | 1.371 (5) | C17—H17 | 0.9300 |
C2—H2 | 0.9300 | C18—C19 | 1.408 (4) |
C3—C4 | 1.377 (5) | C18—H18 | 0.9300 |
C3—H3 | 0.9300 | C20—C21 | 1.504 (5) |
C4—C5 | 1.365 (5) | C21—H21A | 0.9600 |
C5—C6 | 1.402 (4) | C21—H21B | 0.9600 |
C5—H5 | 0.9300 | C21—H21C | 0.9600 |
C6—C7 | 1.445 (5) | ||
O2—Cu1—N1 | 169.27 (11) | N1—C8—C9 | 113.6 (3) |
O2—Cu1—O1 | 84.00 (9) | N1—C8—H8A | 108.8 |
N1—Cu1—O1 | 88.83 (10) | C9—C8—H8A | 108.8 |
O2—Cu1—N2 | 90.96 (11) | N1—C8—H8B | 108.8 |
N1—Cu1—N2 | 93.31 (11) | C9—C8—H8B | 108.8 |
O1—Cu1—N2 | 161.12 (11) | H8A—C8—H8B | 107.7 |
O2—Cu1—O3 | 90.51 (9) | C11—C9—C10 | 111.2 (3) |
N1—Cu1—O3 | 97.66 (10) | C11—C9—C8 | 110.8 (3) |
O1—Cu1—O3 | 91.44 (9) | C10—C9—C8 | 110.5 (3) |
N2—Cu1—O3 | 106.83 (10) | C11—C9—C12 | 110.2 (3) |
O4i—Cu2—O4 | 180.00 (13) | C10—C9—C12 | 106.9 (3) |
O4i—Cu2—O1 | 89.99 (9) | C8—C9—C12 | 107.0 (3) |
O4—Cu2—O1 | 90.01 (9) | N2—C10—C9 | 116.3 (3) |
O4i—Cu2—O1i | 90.01 (9) | N2—C10—H10A | 108.2 |
O4—Cu2—O1i | 89.99 (9) | C9—C10—H10A | 108.2 |
O1—Cu2—O1i | 180.00 (10) | N2—C10—H10B | 108.2 |
O4i—Cu2—O2i | 91.11 (8) | C9—C10—H10B | 108.2 |
O4—Cu2—O2i | 88.89 (8) | H10A—C10—H10B | 107.4 |
O1—Cu2—O2i | 105.35 (8) | C9—C11—H11A | 109.5 |
O1i—Cu2—O2i | 74.65 (8) | C9—C11—H11B | 109.5 |
O4i—Cu2—O2 | 88.89 (8) | H11A—C11—H11B | 109.5 |
O4—Cu2—O2 | 91.11 (8) | C9—C11—H11C | 109.5 |
O1—Cu2—O2 | 74.65 (8) | H11A—C11—H11C | 109.5 |
O1i—Cu2—O2 | 105.35 (8) | H11B—C11—H11C | 109.5 |
O2i—Cu2—O2 | 180.0 | C9—C12—H12A | 109.5 |
C1—O1—Cu1 | 126.0 (2) | C9—C12—H12B | 109.5 |
C1—O1—Cu2 | 130.5 (2) | H12A—C12—H12B | 109.5 |
Cu1—O1—Cu2 | 99.58 (9) | C9—C12—H12C | 109.5 |
C19—O2—Cu1 | 127.3 (2) | H12A—C12—H12C | 109.5 |
C19—O2—Cu2 | 130.9 (2) | H12B—C12—H12C | 109.5 |
Cu1—O2—Cu2 | 94.85 (9) | N2—C13—C14 | 127.6 (3) |
C20—O3—Cu1 | 123.5 (2) | N2—C13—H13 | 116.2 |
C20—O4—Cu2 | 133.1 (2) | C14—C13—H13 | 116.2 |
C7—N1—C8 | 118.1 (3) | C15—C14—C19 | 119.7 (3) |
C7—N1—Cu1 | 124.4 (2) | C15—C14—C13 | 117.6 (3) |
C8—N1—Cu1 | 117.4 (2) | C19—C14—C13 | 122.6 (3) |
C13—N2—C10 | 116.3 (3) | C16—C15—C14 | 120.5 (3) |
C13—N2—Cu1 | 122.7 (2) | C16—C15—H15 | 119.7 |
C10—N2—Cu1 | 121.0 (2) | C14—C15—H15 | 119.7 |
O1—C1—C2 | 120.9 (3) | C15—C16—C17 | 120.9 (3) |
O1—C1—C6 | 121.2 (3) | C15—C16—Cl2 | 120.3 (3) |
C2—C1—C6 | 117.9 (3) | C17—C16—Cl2 | 118.8 (3) |
C3—C2—C1 | 120.9 (3) | C18—C17—C16 | 119.7 (3) |
C3—C2—H2 | 119.6 | C18—C17—H17 | 120.1 |
C1—C2—H2 | 119.6 | C16—C17—H17 | 120.1 |
C2—C3—C4 | 120.7 (3) | C17—C18—C19 | 121.5 (3) |
C2—C3—H3 | 119.7 | C17—C18—H18 | 119.2 |
C4—C3—H3 | 119.7 | C19—C18—H18 | 119.2 |
C5—C4—C3 | 120.5 (3) | O2—C19—C18 | 120.1 (3) |
C5—C4—Cl1 | 120.9 (3) | O2—C19—C14 | 122.3 (3) |
C3—C4—Cl1 | 118.7 (3) | C18—C19—C14 | 117.6 (3) |
C4—C5—C6 | 120.4 (3) | O3—C20—O4 | 127.0 (3) |
C4—C5—H5 | 119.8 | O3—C20—C21 | 118.1 (3) |
C6—C5—H5 | 119.8 | O4—C20—C21 | 115.0 (3) |
C5—C6—C1 | 119.5 (3) | C20—C21—H21A | 109.5 |
C5—C6—C7 | 118.3 (3) | C20—C21—H21B | 109.5 |
C1—C6—C7 | 122.1 (3) | H21A—C21—H21B | 109.5 |
N1—C7—C6 | 127.5 (3) | C20—C21—H21C | 109.5 |
N1—C7—H7 | 116.2 | H21A—C21—H21C | 109.5 |
C6—C7—H7 | 116.2 | H21B—C21—H21C | 109.5 |
O2—Cu1—O1—C1 | −137.9 (3) | Cu1—O1—C1—C2 | 156.4 (2) |
N1—Cu1—O1—C1 | 34.1 (3) | Cu2—O1—C1—C2 | 3.4 (5) |
N2—Cu1—O1—C1 | −62.7 (4) | Cu1—O1—C1—C6 | −25.2 (4) |
O3—Cu1—O1—C1 | 131.8 (2) | Cu2—O1—C1—C6 | −178.2 (2) |
O2—Cu1—O1—Cu2 | 21.70 (10) | O1—C1—C2—C3 | −178.6 (3) |
N1—Cu1—O1—Cu2 | −166.30 (11) | C6—C1—C2—C3 | 3.0 (5) |
N2—Cu1—O1—Cu2 | 96.9 (3) | C1—C2—C3—C4 | −0.9 (6) |
O3—Cu1—O1—Cu2 | −68.66 (10) | C2—C3—C4—C5 | −2.3 (6) |
O4i—Cu2—O1—C1 | 50.4 (3) | C2—C3—C4—Cl1 | 179.1 (3) |
O4—Cu2—O1—C1 | −129.6 (3) | C3—C4—C5—C6 | 3.3 (5) |
O2i—Cu2—O1—C1 | −40.8 (3) | Cl1—C4—C5—C6 | −178.2 (3) |
O2—Cu2—O1—C1 | 139.2 (3) | C4—C5—C6—C1 | −1.1 (5) |
O4i—Cu2—O1—Cu1 | −107.81 (10) | C4—C5—C6—C7 | −177.8 (3) |
O4—Cu2—O1—Cu1 | 72.19 (10) | O1—C1—C6—C5 | 179.6 (3) |
O2i—Cu2—O1—Cu1 | 161.04 (9) | C2—C1—C6—C5 | −2.0 (5) |
O2—Cu2—O1—Cu1 | −18.96 (9) | O1—C1—C6—C7 | −3.8 (5) |
N1—Cu1—O2—C19 | 85.3 (6) | C2—C1—C6—C7 | 174.6 (3) |
O1—Cu1—O2—C19 | 133.6 (3) | C8—N1—C7—C6 | −176.5 (3) |
N2—Cu1—O2—C19 | −28.2 (3) | Cu1—N1—C7—C6 | 6.9 (5) |
O3—Cu1—O2—C19 | −135.0 (3) | C5—C6—C7—N1 | −169.5 (3) |
N1—Cu1—O2—Cu2 | −67.7 (5) | C1—C6—C7—N1 | 13.9 (5) |
O1—Cu1—O2—Cu2 | −19.43 (9) | C7—N1—C8—C9 | −113.3 (4) |
N2—Cu1—O2—Cu2 | 178.80 (10) | Cu1—N1—C8—C9 | 63.6 (4) |
O3—Cu1—O2—Cu2 | 71.96 (9) | N1—C8—C9—C11 | 54.7 (4) |
O4i—Cu2—O2—C19 | −41.8 (3) | N1—C8—C9—C10 | −69.0 (4) |
O4—Cu2—O2—C19 | 138.2 (3) | N1—C8—C9—C12 | 174.9 (3) |
O1—Cu2—O2—C19 | −132.1 (3) | C13—N2—C10—C9 | 134.9 (3) |
O1i—Cu2—O2—C19 | 47.9 (3) | Cu1—N2—C10—C9 | −46.4 (4) |
O4i—Cu2—O2—Cu1 | 109.72 (10) | C11—C9—C10—N2 | −64.1 (4) |
O4—Cu2—O2—Cu1 | −70.28 (10) | C8—C9—C10—N2 | 59.5 (4) |
O1—Cu2—O2—Cu1 | 19.42 (9) | C12—C9—C10—N2 | 175.6 (3) |
O1i—Cu2—O2—Cu1 | −160.58 (9) | C10—N2—C13—C14 | 171.2 (3) |
O2—Cu1—O3—C20 | −48.2 (2) | Cu1—N2—C13—C14 | −7.4 (5) |
N1—Cu1—O3—C20 | 124.9 (2) | N2—C13—C14—C15 | 174.8 (3) |
O1—Cu1—O3—C20 | 35.9 (2) | N2—C13—C14—C19 | −9.1 (6) |
N2—Cu1—O3—C20 | −139.3 (2) | C19—C14—C15—C16 | 1.2 (5) |
O1—Cu2—O4—C20 | −44.3 (3) | C13—C14—C15—C16 | 177.4 (3) |
O1i—Cu2—O4—C20 | 135.7 (3) | C14—C15—C16—C17 | −1.4 (6) |
O2i—Cu2—O4—C20 | −149.7 (3) | C14—C15—C16—Cl2 | 177.8 (3) |
O2—Cu2—O4—C20 | 30.3 (3) | C15—C16—C17—C18 | 1.4 (6) |
O2—Cu1—N1—C7 | 23.8 (7) | Cl2—C16—C17—C18 | −177.9 (3) |
O1—Cu1—N1—C7 | −24.2 (3) | C16—C17—C18—C19 | −1.1 (5) |
N2—Cu1—N1—C7 | 137.0 (3) | Cu1—O2—C19—C18 | −159.7 (2) |
O3—Cu1—N1—C7 | −115.5 (3) | Cu2—O2—C19—C18 | −16.4 (4) |
O2—Cu1—N1—C8 | −152.9 (5) | Cu1—O2—C19—C14 | 20.9 (4) |
O1—Cu1—N1—C8 | 159.1 (2) | Cu2—O2—C19—C14 | 164.2 (2) |
N2—Cu1—N1—C8 | −39.6 (2) | C17—C18—C19—O2 | −178.6 (3) |
O3—Cu1—N1—C8 | 67.8 (2) | C17—C18—C19—C14 | 0.9 (5) |
O2—Cu1—N2—C13 | 20.7 (3) | C15—C14—C19—O2 | 178.5 (3) |
N1—Cu1—N2—C13 | −149.5 (3) | C13—C14—C19—O2 | 2.5 (5) |
O1—Cu1—N2—C13 | −53.4 (5) | C15—C14—C19—C18 | −0.9 (5) |
O3—Cu1—N2—C13 | 111.5 (3) | C13—C14—C19—C18 | −176.9 (3) |
O2—Cu1—N2—C10 | −157.9 (2) | Cu1—O3—C20—O4 | 0.0 (5) |
N1—Cu1—N2—C10 | 31.9 (3) | Cu1—O3—C20—C21 | 179.9 (2) |
O1—Cu1—N2—C10 | 128.0 (3) | Cu2—O4—C20—O3 | 6.2 (5) |
O3—Cu1—N2—C10 | −67.1 (3) | Cu2—O4—C20—C21 | −173.7 (2) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O4i | 0.93 | 2.58 | 3.115 (4) | 117 |
C15—H15···O3ii | 0.93 | 2.59 | 3.289 (4) | 133 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+3/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu3(C19H18Cl2N2O2)2(C2H3O2)2] |
Mr | 1063.25 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 298 |
a, b, c (Å) | 19.0732 (18), 11.6191 (11), 19.693 (3) |
V (Å3) | 4364.2 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.75 |
Crystal size (mm) | 0.23 × 0.20 × 0.16 |
Data collection | |
Diffractometer | Rigaku AFC7R diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.675, 0.756 |
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections | 7325, 5006, 2796 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.105, 1.00 |
No. of reflections | 5006 |
No. of parameters | 280 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.39, −0.45 |
Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2010), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O4i | 0.93 | 2.58 | 3.115 (4) | 117 |
C15—H15···O3ii | 0.93 | 2.59 | 3.289 (4) | 133 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+3/2, y−1/2, z. |
Acknowledgements
This study was supported financially in part by Grants-in-Aid for Scientific Research (grant Nos. 20550075 and 23550094) from the Japan Society for the Promotion of Science.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Atakol, O., Arıcı, C., Ercan, F. & Ülkü, D. (1999). Acta Cryst. C55, 511–513. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Chen, B., Xiang, S. & Qian, G. (2010). Acc. Chem. Res. 43, 1115–1124. Web of Science CrossRef CAS PubMed Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Feng, Y.-F., Wu, H.-Y., Zhu, B.-L., Wang, S.-R. & Huang, W.-P. (2007). Acta Cryst. E63, m1107–m1108. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fukuhara, C., Tsuneyoshi, K., Matsumoto, N., Kida, S., Mikuriya, M. & Mori, M. (1990). J. Chem. Soc. Dalton Trans. pp. 3473–3479. CSD CrossRef Web of Science Google Scholar
Gianneschi, N. C., Bertin, P. A., Nguyen, S. T., Mirkin, C. A., Zakharov, L. N. & Rheingold, L. (2003). J. Am. Chem. Soc. 125, 10508–10509. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kargar, H., Kia, R., Ganji, F. & Mirkhani, V. (2012). Acta Cryst. E68, m1135. CSD CrossRef IUCr Journals Google Scholar
Kubono, K., Noshita, C., Tani, K. & Yokoi, K. (2009). Acta Cryst. E65, m1685–m1686. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kubono, K., Tsuno, Y., Tani, K. & Yokoi, K. (2010). Acta Cryst. E66, m1397–m1398. Web of Science CSD CrossRef IUCr Journals Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Ray, A., Sadhukhan, D., Rosair, G. M., Gómez-García, C. J. & Mitra, S. (2009). Polyhedron, 28, 3542–3550. Web of Science CrossRef CAS Google Scholar
Richthofen, C.-G. F. von, Stammler, A., Bögge, H., DeGroot, M. W., Long, J. R. & Glaser, T. (2009). Inorg. Chem. 48, 10165–10176. PubMed Google Scholar
Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, S.-P., Hong, Y., Chen, H.-M., Zhang, F., Chen, Q.-Q. & Yu, X.-B. (2004). Acta Cryst. E60, m582–m584. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Supramolecular complexes, formed by hydrogen bonds or coordination linkages have received much attention, because of their interesting and functional properties such as molecular recognition, magnetism and catalysis (Chen et al., 2010; von Richthofen et al., 2009; Gianneschi et al., 2003). We have previously studied the structures of supramolecular CuII complexes with planar tetradentate piperazine ligands containing fluoro or chloro groups (Kubono et al., 2010; Kubono et al., 2009). These CuII complexes form either a dimer, or a dinuclear structure through C—H···F, or C—H···Cl hydrogen bonds. Complexes with the tetradentate Schiff base ligand, bis(salicylidene)propane-1,3-diamine can form triuclear complexes with coordinating anions or solvents to generate supramolecular architectures (Atakol et al., 1999; Fukuhara et al., 1990; Ray et al., 2009). However no structures of trinuclear complexes with bis-halogenosalicylidene and anionic ligands have been reported. We have attempted to assemble such a species from the mononuclear CuII complex {4,4'-dichloro-2,2'-[2,2-dimethylpropane-1,3- diylbis(nitrilomethanylylidene)]diphenolato}copper(II) (Kargar et al., 2012) and copper(II) acetate as the building blocks. Herein, the structure of the title trinuclear complex is reported.
The central CuII atom is located on a centre of inversion and has a distorted octahedral coordination environment formed by four O atoms from two tetradentate Schiff base ligands in the equatorial plane and an O atom from each of the two bridging acetate ligands in the axial positions. The coordination geometry of the terminal CuII atom is square-pyramidal with the basal plane comprised of two phenolate O and two imine N atoms from a tetradentate ligand. The apical site is occupied by one O atom from a bridging acetate ligand. The terminal CuII atom is located 0.2370 (4) Å from the mean basal plane (N1/N2/O1/O2). The six-membered Cu1/N1/C8/C9/C10/N2 ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975): Q = 0.549 (4) Å, θ = 16.4 (3)° and ϕ = 141.7 (13)°. Bond lengths and angles involving CuII are comparable to those observed in related structures (Atakol et al., 1999). The dihedral angle between the benzene rings (C1–C6 and C14–C19) is 68.73 (12)°. The acetate-bridged Cu···Cu distance is 3.0910 (5) Å, similar to those of related linear homo-trinuclear CuII complexes (Atakol et al., 1999; Feng et al., 2007; Yang et al., 2004). There is an intramolecular C2—H2···O4i hydrogen bond [symmetry code: (i) -x + 1, -y, -z + 1; Table 1], forming a S(6) ring motif (Bernstein et al., 1995). The molecular conformationof the trinuclear complex is stabilized by the intramolecular hydrogen bonds. In the crystal, the trinuclear complex molecules are linked through intermolecular C—H···O hydrogen bonds into a two-dimensional supramolecular network, parallel to the ab plane (Table 1 and Fig. 2).