metal-organic compounds
N,N′-bis[(3-hydroxy-4(4H)-oxypyran-2-yl)methyl]-N,N′-dimethylethylene-1,2-diammonium tetrachloridoplatinate(II) dihydrate
aDepartment of Basic Sciences and Fundamentals, University of Urbino, I-61029 Urbino, Italy, and bDip. Energetica `Sergio Stecco', University of Firenze, Via S. Marta 3, I-50139 Firenze, Italy
*Correspondence e-mail: paolapaoli@unifi.it
The title compound (C16H22N2O6)[PtCl4]·2H2O, shows antiproliferative activity in eight tumor cell lines. The consists of one solvent water molecule on a general position, and one half of each of the polyammonium cation and the tetrachloridoplatinate(II) anion, both of them located on centers of inversion. In the crystal, the cations are connected via hydrogen bonding between the carbonyl O atoms and the hydroxyl H atoms into zigzag chains that elongate in the c-axis direction. In addition, the carbonyl O atom is hydrogen-bonded to the water molecule which, in turn, interacts with the [PtCl4]2− anion. Finally, the chains are linked by N—H+⋯Cl interactions into a three-dimensional network.
Related literature
For the antitumor activity of maltol (systematic name: 3-hydroxy-2-methyl-4-pyrone) and polyamines, see: Casero & Woster (2001); Liang et al. (2006); Murakami et al. (2006). For background to the synthesis, solution behaviour, structural properties and biological activity of N,N′-bis[(3-hydroxy-4-pyron-2-yl)methyl]-N,N′-dimethylethylendiamine (Malten), see: Amatori et al. (2010, 2012).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PARST97 (Nardelli, 1995).
Supporting information
10.1107/S1600536812040949/nc2294sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812040949/nc2294Isup2.hkl
Malten.2HClO4 was dissolved in H2O, K2PtCl4 was added and the pH adjusted to 3. Crystals suitable for X-ray analysis formed in one day at room temperature.
The O—H and N—H H atoms were located in the Fourier difference map and refined with varying coordinates isotropic. The C—H H atoms were introduced in calculated position and refined isotropic with Uiso(H) 1.2 times Ueq(C) (1.5 for methyl H atoms).
Data collection: CrysAlis PRO (Oxford Diffraction 2009); cell
CrysAlis PRO (Oxford Diffraction 2009); data reduction: CrysAlis PRO (Oxford Diffraction 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PARST97 (Nardelli, 1995).Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: i) = -x + 2, -y, -z + 1; ii) = -x + 1, -y + 1, -z + 1. | |
Fig. 2. Crystal structure of the title compound with view along the a axis. Intermolecular hydrogen bonding is shown as dashed lines. |
(C16H22N2O6)[PtCl4]·2H2O | Z = 1 |
Mr = 711.28 | F(000) = 346 |
Triclinic, P1 | Dx = 2.083 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.4775 (4) Å | Cell parameters from 7279 reflections |
b = 7.0037 (4) Å | θ = 4.1–29.2° |
c = 13.1628 (8) Å | µ = 6.71 mm−1 |
α = 88.810 (5)° | T = 150 K |
β = 87.033 (5)° | Prismatic, light yellow |
γ = 71.927 (6)° | 0.32 × 0.22 × 0.20 mm |
V = 566.92 (6) Å3 |
Oxford Diffraction Xcalibur3 diffractometer | 2719 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2694 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
Detector resolution: 16.4547 pixels mm-1 | θmax = 29.3°, θmin = 4.1° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction 2009) | k = −9→9 |
Tmin = 0.164, Tmax = 0.262 | l = −17→17 |
9431 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.049 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0253P)2] where P = (Fo2 + 2Fc2)/3 |
2719 reflections | (Δ/σ)max < 0.001 |
158 parameters | Δρmax = 1.44 e Å−3 |
0 restraints | Δρmin = −1.14 e Å−3 |
(C16H22N2O6)[PtCl4]·2H2O | γ = 71.927 (6)° |
Mr = 711.28 | V = 566.92 (6) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.4775 (4) Å | Mo Kα radiation |
b = 7.0037 (4) Å | µ = 6.71 mm−1 |
c = 13.1628 (8) Å | T = 150 K |
α = 88.810 (5)° | 0.32 × 0.22 × 0.20 mm |
β = 87.033 (5)° |
Oxford Diffraction Xcalibur3 diffractometer | 2719 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction 2009) | 2694 reflections with I > 2σ(I) |
Tmin = 0.164, Tmax = 0.262 | Rint = 0.044 |
9431 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 0 restraints |
wR(F2) = 0.049 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 1.44 e Å−3 |
2719 reflections | Δρmin = −1.14 e Å−3 |
158 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pt1 | 1.0000 | 0.0000 | 0.5000 | 0.01531 (6) | |
Cl1 | 1.25762 (12) | 0.12554 (11) | 0.42237 (6) | 0.01926 (15) | |
Cl2 | 0.82520 (13) | 0.02992 (11) | 0.34889 (6) | 0.02098 (16) | |
O1 | 0.8029 (5) | 0.6477 (4) | 0.1284 (2) | 0.0298 (6) | |
O2 | 0.8598 (4) | 0.3386 (4) | −0.00821 (17) | 0.0278 (5) | |
O3 | 0.3953 (4) | 0.4312 (3) | 0.22157 (16) | 0.0218 (5) | |
N1 | 0.5757 (4) | 0.6487 (4) | 0.3876 (2) | 0.0169 (5) | |
C1 | 0.4294 (6) | 0.2757 (5) | 0.1565 (3) | 0.0261 (7) | |
H1 | 0.3424 | 0.1924 | 0.1649 | 0.031* | |
C2 | 0.5823 (6) | 0.2365 (5) | 0.0809 (3) | 0.0263 (7) | |
H2 | 0.5998 | 0.1263 | 0.0394 | 0.032* | |
C3 | 0.7197 (5) | 0.3601 (5) | 0.0625 (2) | 0.0224 (7) | |
C4 | 0.6815 (5) | 0.5228 (5) | 0.1358 (2) | 0.0205 (6) | |
C5 | 0.5256 (5) | 0.5510 (5) | 0.2108 (2) | 0.0187 (6) | |
C6 | 0.4731 (5) | 0.7161 (5) | 0.2869 (2) | 0.0190 (6) | |
H6A | 0.3166 | 0.7682 | 0.2984 | 0.023* | |
H6B | 0.5233 | 0.8244 | 0.2595 | 0.023* | |
C7 | 0.4568 (5) | 0.5266 (5) | 0.4470 (2) | 0.0181 (6) | |
H7A | 0.4719 | 0.4039 | 0.4103 | 0.022* | |
H7B | 0.3033 | 0.6018 | 0.4532 | 0.022* | |
C15 | 0.8152 (5) | 0.5442 (5) | 0.3735 (2) | 0.0181 (6) | |
H15A | 0.8821 | 0.6290 | 0.3351 | 0.027* | |
H15B | 0.8389 | 0.4207 | 0.3376 | 0.027* | |
H15C | 0.8778 | 0.5159 | 0.4388 | 0.027* | |
O1W | 1.1440 (5) | −0.0251 (4) | 0.1423 (2) | 0.0343 (6) | |
H1N | 0.559 (6) | 0.742 (6) | 0.417 (3) | 0.028 (11)* | |
H1O | 0.888 (7) | 0.623 (6) | 0.088 (3) | 0.024 (11)* | |
H1WA | 1.062 (9) | −0.020 (8) | 0.194 (4) | 0.059 (16)* | |
H1WB | 1.128 (7) | −0.105 (7) | 0.104 (3) | 0.040 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.01339 (9) | 0.01279 (9) | 0.02021 (9) | −0.00476 (6) | 0.00072 (6) | −0.00306 (6) |
Cl1 | 0.0169 (4) | 0.0185 (4) | 0.0241 (4) | −0.0084 (3) | 0.0032 (3) | −0.0031 (3) |
Cl2 | 0.0223 (4) | 0.0208 (4) | 0.0219 (4) | −0.0092 (3) | −0.0040 (3) | −0.0009 (3) |
O1 | 0.0347 (15) | 0.0327 (14) | 0.0275 (13) | −0.0200 (12) | 0.0137 (12) | −0.0108 (11) |
O2 | 0.0310 (14) | 0.0309 (13) | 0.0237 (12) | −0.0136 (11) | 0.0074 (10) | −0.0087 (10) |
O3 | 0.0236 (12) | 0.0246 (12) | 0.0197 (11) | −0.0112 (10) | −0.0005 (9) | −0.0021 (9) |
N1 | 0.0197 (14) | 0.0154 (13) | 0.0168 (12) | −0.0074 (11) | 0.0002 (10) | −0.0020 (10) |
C1 | 0.0284 (19) | 0.0261 (18) | 0.0283 (17) | −0.0143 (15) | −0.0056 (15) | 0.0001 (14) |
C2 | 0.0310 (19) | 0.0242 (17) | 0.0271 (17) | −0.0134 (15) | 0.0003 (15) | −0.0062 (13) |
C3 | 0.0251 (18) | 0.0222 (16) | 0.0196 (15) | −0.0064 (13) | −0.0035 (13) | −0.0020 (12) |
C4 | 0.0236 (17) | 0.0208 (16) | 0.0191 (15) | −0.0096 (13) | −0.0003 (13) | −0.0030 (12) |
C5 | 0.0218 (16) | 0.0177 (15) | 0.0172 (14) | −0.0065 (13) | −0.0041 (13) | 0.0014 (11) |
C6 | 0.0220 (16) | 0.0170 (15) | 0.0170 (14) | −0.0047 (12) | −0.0027 (12) | 0.0018 (11) |
C7 | 0.0171 (15) | 0.0176 (15) | 0.0200 (15) | −0.0060 (12) | 0.0006 (12) | 0.0009 (11) |
C15 | 0.0158 (15) | 0.0189 (15) | 0.0194 (14) | −0.0051 (12) | 0.0007 (12) | −0.0008 (11) |
O1W | 0.0380 (17) | 0.0383 (16) | 0.0315 (15) | −0.0187 (13) | −0.0001 (13) | −0.0064 (12) |
Pt1—Cl1i | 2.3018 (8) | C2—C3 | 1.431 (5) |
Pt1—Cl1 | 2.3018 (8) | C2—H2 | 0.9300 |
Pt1—Cl2i | 2.3132 (7) | C3—C4 | 1.462 (4) |
Pt1—Cl2 | 2.3132 (7) | C4—C5 | 1.348 (5) |
O1—C4 | 1.345 (4) | C5—C6 | 1.491 (4) |
O1—H1O | 0.73 (4) | C6—H6A | 0.9700 |
O2—C3 | 1.243 (4) | C6—H6B | 0.9700 |
O3—C1 | 1.356 (4) | C7—C7ii | 1.526 (6) |
O3—C5 | 1.363 (4) | C7—H7A | 0.9700 |
N1—C15 | 1.499 (4) | C7—H7B | 0.9700 |
N1—C7 | 1.501 (4) | C15—H15A | 0.9600 |
N1—C6 | 1.514 (4) | C15—H15B | 0.9600 |
N1—H1N | 0.74 (4) | C15—H15C | 0.9600 |
C1—C2 | 1.337 (5) | O1W—H1WA | 0.84 (5) |
C1—H1 | 0.9300 | O1W—H1WB | 0.79 (5) |
Cl1i—Pt1—Cl1 | 180.00 (4) | O1—C4—C3 | 119.7 (3) |
Cl1i—Pt1—Cl2i | 90.28 (3) | C5—C4—C3 | 121.2 (3) |
Cl1—Pt1—Cl2i | 89.72 (3) | C4—C5—O3 | 121.9 (3) |
Cl1i—Pt1—Cl2 | 89.72 (3) | C4—C5—C6 | 124.4 (3) |
Cl1—Pt1—Cl2 | 90.28 (3) | O3—C5—C6 | 113.7 (3) |
Cl2i—Pt1—Cl2 | 180.0 | C5—C6—N1 | 112.9 (2) |
C4—O1—H1O | 115 (3) | C5—C6—H6A | 109.0 |
C1—O3—C5 | 118.6 (3) | N1—C6—H6A | 109.0 |
C15—N1—C7 | 113.3 (2) | C5—C6—H6B | 109.0 |
C15—N1—C6 | 111.5 (2) | N1—C6—H6B | 109.0 |
C7—N1—C6 | 110.8 (2) | H6A—C6—H6B | 107.8 |
C15—N1—H1N | 109 (3) | N1—C7—C7ii | 111.9 (3) |
C7—N1—H1N | 107 (3) | N1—C7—H7A | 109.2 |
C6—N1—H1N | 106 (3) | C7ii—C7—H7A | 109.2 |
C2—C1—O3 | 123.1 (3) | N1—C7—H7B | 109.2 |
C2—C1—H1 | 118.5 | C7ii—C7—H7B | 109.2 |
O3—C1—H1 | 118.5 | H7A—C7—H7B | 107.9 |
C1—C2—C3 | 121.5 (3) | N1—C15—H15A | 109.5 |
C1—C2—H2 | 119.2 | N1—C15—H15B | 109.5 |
C3—C2—H2 | 119.2 | H15A—C15—H15B | 109.5 |
O2—C3—C2 | 125.6 (3) | N1—C15—H15C | 109.5 |
O2—C3—C4 | 120.7 (3) | H15A—C15—H15C | 109.5 |
C2—C3—C4 | 113.7 (3) | H15B—C15—H15C | 109.5 |
O1—C4—C5 | 119.1 (3) | H1WA—O1W—H1WB | 109 (5) |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O2iii | 0.73 (4) | 1.98 (4) | 2.655 (4) | 154 (4) |
O1W—H1WB···O2iv | 0.79 (5) | 2.07 (5) | 2.853 (4) | 171 (4) |
O1W—H1WA···Cl2 | 0.84 (5) | 2.45 (5) | 3.282 (3) | 174 (5) |
N1—H1N···Cl1v | 0.74 (4) | 2.79 (4) | 3.380 (3) | 139 (4) |
N1—H1N···Cl1vi | 0.74 (4) | 2.79 (4) | 3.362 (3) | 136 (4) |
Symmetry codes: (iii) −x+2, −y+1, −z; (iv) −x+2, −y, −z; (v) −x+2, −y+1, −z+1; (vi) x−1, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | (C16H22N2O6)[PtCl4]·2H2O |
Mr | 711.28 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 6.4775 (4), 7.0037 (4), 13.1628 (8) |
α, β, γ (°) | 88.810 (5), 87.033 (5), 71.927 (6) |
V (Å3) | 566.92 (6) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 6.71 |
Crystal size (mm) | 0.32 × 0.22 × 0.20 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur3 diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction 2009) |
Tmin, Tmax | 0.164, 0.262 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9431, 2719, 2694 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.689 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.049, 1.02 |
No. of reflections | 2719 |
No. of parameters | 158 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.44, −1.14 |
Computer programs: CrysAlis PRO (Oxford Diffraction 2009), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PARST97 (Nardelli, 1995).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O2i | 0.727 (38) | 1.983 (43) | 2.655 (4) | 154 (4) |
O1W—H1WB···O2ii | 0.794 (51) | 2.066 (50) | 2.853 (4) | 171 (4) |
O1W—H1WA···Cl2 | 0.837 (52) | 2.449 (51) | 3.282 (3) | 174 (5) |
N1—H1N···Cl1iii | 0.743 (42) | 2.786 (43) | 3.380 (3) | 139 (4) |
N1—H1N···Cl1iv | 0.743 (42) | 2.788 (36) | 3.362 (3) | 136 (4) |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+2, −y, −z; (iii) −x+2, −y+1, −z+1; (iv) x−1, y+1, z. |
Acknowledgements
The authors acknowledge CRIST (Centro di Cristallografia Strutturale, University of Firenze), where the data collection was performed, and the Italian Ministero dell'Istruzione dell'Università e della Ricerca (MIUR), PRIN2009, for financial support.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Amatori, S., Ambrosi, G., Fanelli, M., Formica, M., Fusi, V., Giorgi, L., Macedi, E., Micheloni, M., Paoli, P., Pontellini, R. & Rossi, P. (2012). J. Org. Chem. 77, 2207–2218. Web of Science CSD CrossRef CAS PubMed Google Scholar
Amatori, S., Bagaloni, I., Fanelli, M., Formica, M., Fusi, V., Giorgi, L. & Macedi, E. (2010). Br. J. Cancer, 103, 239–248. Web of Science CrossRef CAS PubMed Google Scholar
Casero, R. A. J. & Woster, P. M. J. (2001). Med. Chem. 44, 1–26. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Liang, F., Wan, S., Li, Z., Xiong, X., Yang, L., Zhou, X. & Wu, C. (2006). Curr. Med. Chem. 13, 711–727. Web of Science CrossRef PubMed CAS Google Scholar
Murakami, K., Ishida, K., Watakabe, K., Tsubouchi, R., Naruse, M. & Yoshino, M. (2006). Toxicol. Lett. 161, 102–107. Web of Science CrossRef PubMed CAS Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Maltol (3-hydroxy-2-methyl-4-pyrone) is a natural compound, which exhibits interesting antineoplastic activities (Murakami et al., 2006). At the same time, linear polyamines are also known antitumor agents (Liang et al., 2006; Casero & Woster, 2001). For these reasons we synthesized and studied compound N,N'-bis((3-hydroxy-4-pyron-2-yl)methyl)-N,N'-dimethylethylendiamine (Malten) coupling two Maltol units to an aliphatic diamine. Malten has shown antiproliferative activity in eight tumor cell lines (Amatori et al.,2010; Amatori et al., 2012). In the asymmetric unit of the title compound half of the polyammonium cation [H2Malten]2+ and of the tetrachloroplatinate(II) counterion are present, together with a crystallization water molecule. The two halves of each ion are related by a center of symmetry (Fig. 1). The [H2Malten]2+ polyammonium chain, which joins the two aromatic rings, has an all-trans conformation and defines a plane which forms an angle of 65.4 (2)° with each of them. In the crystal lattice the [H2Malten]2+ cations are each linked by two pairs of complementary O—H···O hydrogen bonds into centrosymmetric dimers, which are further linked into chains along the c axis (Fig. 2 and Table 1). Moreover, the carbonyl O atom (O2) is H-bonded to the lattice water molecule, which is also linked to the (PtCl4)2- anion by O—H···Cl interactions. Finally, the cations and anions are linked by N—H+···Cl interactions.