metal-organic compounds
Bis(diphenyl-p-tolylphosphane-κP)(2-hydroxy-3,5,7-bromocyclohepta-2,4,6-trienonato-κ2O,O′)copper(I)
aDepartment of Chemistry, University of the Free State, Bloemfontein, Free State. South Africa
*Correspondence e-mail: 2000011219@ufs4life.ac.za
The CuI atom in the title compund, [Cu(C7H2Br3O2)(C19H17P)2], is located on a twofold rotation axis; the 3,5,7-tribromotropolonate anion coordinates as a bidentate ligand with a bite angle of 76.42 (9)°. An intramolecular C—H⋯O interaction occurs. Within the crystal, extensive weak C—H⋯π interactions contribute to the herringbone pattern observed in the packing of the molecules.
Related literature
For background to tropolone and its derivatives, see: Dewar (1945); Hill & Steyl (2008); Crous et al. (2005). For bis-troplolonato–copper(II) complexes, see: Chipperfield et al. (1998); Hasegawa et al. (1997); Ho (2010); Ho et al. (2009). For work on the effect the troplonato ligand has on the solid state and chemical behaviour of copper(I) phosphine metal complexes, see: Roodt et al. (2003); Steyl (2007, 2009); Steyl & Hill (2009); Steyl & Roodt (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812042286/ng5299sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812042286/ng5299Isup2.hkl
3,5,7-Tribomotropolone (0.3 mmol) was dissolved in methanol (20 ml). To this solution was added Bis(diphenyl(p-tolyl)-phosphine) copper nitrate (0.3 mmol). The resulting mixture was stirred at room temperature for 30 minutes before filtering. The filtrate was then slowly evaporated yielding crystals siutable for X-ray diffraction after 48 h.
Hydroge atoms were placed in calculated positions, and were allowed to ride on their parent C atoms.
The final difference Fouier map had a peak/hole in the vicinity of Br1.
Data collection: APEX2 (Bruker, 2005); cell
SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).[Cu(C7H2Br3O2)(C19H17P)2] | F(000) = 1944 |
Mr = 973.95 | Dx = 1.604 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 8436 reflections |
a = 15.4522 (8) Å | θ = 2.3–28.4° |
b = 13.9073 (8) Å | µ = 3.63 mm−1 |
c = 19.3269 (10) Å | T = 100 K |
β = 103.862 (3)° | Cuboid, green |
V = 4032.4 (4) Å3 | 0.18 × 0.09 × 0.06 mm |
Z = 4 |
Bruker X8 APEXII 4K Kappa CCD diffractometer | 5022 independent reflections |
Radiation source: sealed tube | 3970 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
Detector resolution: 512 pixels mm-1 | θmax = 28.4°, θmin = 2° |
ϕ and ω scans | h = −19→20 |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | k = −15→18 |
Tmin = 0.686, Tmax = 0.746 | l = −25→25 |
27602 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0661P)2 + 16.6643P] where P = (Fo2 + 2Fc2)/3 |
5022 reflections | (Δ/σ)max < 0.001 |
241 parameters | Δρmax = 1.51 e Å−3 |
0 restraints | Δρmin = −1.57 e Å−3 |
[Cu(C7H2Br3O2)(C19H17P)2] | V = 4032.4 (4) Å3 |
Mr = 973.95 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 15.4522 (8) Å | µ = 3.63 mm−1 |
b = 13.9073 (8) Å | T = 100 K |
c = 19.3269 (10) Å | 0.18 × 0.09 × 0.06 mm |
β = 103.862 (3)° |
Bruker X8 APEXII 4K Kappa CCD diffractometer | 5022 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 3970 reflections with I > 2σ(I) |
Tmin = 0.686, Tmax = 0.746 | Rint = 0.053 |
27602 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0661P)2 + 16.6643P] where P = (Fo2 + 2Fc2)/3 |
5022 reflections | Δρmax = 1.51 e Å−3 |
241 parameters | Δρmin = −1.57 e Å−3 |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C2 | 0.5382 (2) | 0.6353 (3) | 0.28258 (18) | 0.0213 (7) | |
C3 | 0.5717 (2) | 0.7199 (3) | 0.32159 (19) | 0.0230 (7) | |
C4 | 0.5556 (2) | 0.8171 (3) | 0.3086 (2) | 0.0294 (8) | |
H4 | 0.5867 | 0.8596 | 0.3446 | 0.035* | |
C5 | 0.5 | 0.8599 (3) | 0.25 | 0.0295 (12) | |
C111 | 0.3102 (2) | 0.3211 (3) | 0.25441 (19) | 0.0242 (7) | |
C112 | 0.2526 (2) | 0.3880 (3) | 0.2148 (2) | 0.0309 (8) | |
H112 | 0.2662 | 0.4546 | 0.2202 | 0.037* | |
C113 | 0.1744 (3) | 0.3578 (4) | 0.1667 (2) | 0.0373 (10) | |
H113 | 0.1339 | 0.4041 | 0.1411 | 0.045* | |
C114 | 0.1562 (3) | 0.2615 (4) | 0.1565 (2) | 0.0375 (10) | |
H114 | 0.1041 | 0.2411 | 0.1227 | 0.045* | |
C115 | 0.2132 (3) | 0.1946 (3) | 0.1954 (2) | 0.0384 (10) | |
H115 | 0.2003 | 0.128 | 0.1883 | 0.046* | |
C116 | 0.2898 (2) | 0.2235 (3) | 0.2451 (2) | 0.0310 (8) | |
H116 | 0.3281 | 0.1769 | 0.2725 | 0.037* | |
C121 | 0.4606 (2) | 0.2639 (2) | 0.36831 (19) | 0.0221 (7) | |
C122 | 0.5385 (3) | 0.2234 (3) | 0.3588 (2) | 0.0317 (8) | |
H122 | 0.5645 | 0.2472 | 0.3223 | 0.038* | |
C123 | 0.5799 (3) | 0.1478 (3) | 0.4021 (3) | 0.0432 (11) | |
H123 | 0.6334 | 0.1205 | 0.3949 | 0.052* | |
C124 | 0.5423 (3) | 0.1126 (3) | 0.4559 (2) | 0.0412 (10) | |
H124 | 0.57 | 0.0613 | 0.4856 | 0.049* | |
C125 | 0.4650 (3) | 0.1526 (3) | 0.4655 (3) | 0.0470 (12) | |
H125 | 0.4394 | 0.1292 | 0.5023 | 0.056* | |
C126 | 0.4237 (3) | 0.2272 (3) | 0.4219 (3) | 0.0391 (10) | |
H126 | 0.3697 | 0.2535 | 0.4288 | 0.047* | |
C131 | 0.3738 (2) | 0.4421 (2) | 0.37497 (17) | 0.0202 (7) | |
C132 | 0.2920 (2) | 0.4256 (3) | 0.39248 (19) | 0.0236 (7) | |
H132 | 0.2525 | 0.3778 | 0.3677 | 0.028* | |
C133 | 0.2690 (2) | 0.4791 (3) | 0.4460 (2) | 0.0277 (8) | |
H133 | 0.2138 | 0.4667 | 0.4579 | 0.033* | |
C134 | 0.3244 (3) | 0.5498 (3) | 0.4823 (2) | 0.0303 (8) | |
C135 | 0.4049 (2) | 0.5684 (3) | 0.46311 (19) | 0.0263 (7) | |
H135 | 0.443 | 0.6183 | 0.4864 | 0.032* | |
C136 | 0.4292 (2) | 0.5143 (3) | 0.41023 (18) | 0.0222 (7) | |
H136 | 0.4841 | 0.527 | 0.3981 | 0.027* | |
C137 | 0.3016 (3) | 0.6032 (4) | 0.5422 (3) | 0.0512 (13) | |
H13A | 0.3485 | 0.6502 | 0.5612 | 0.077* | |
H13B | 0.2964 | 0.5579 | 0.5798 | 0.077* | |
H13C | 0.2447 | 0.6368 | 0.5249 | 0.077* | |
O2 | 0.56859 (15) | 0.55420 (17) | 0.30362 (13) | 0.0227 (5) | |
P1 | 0.41329 (5) | 0.36611 (6) | 0.31230 (5) | 0.01920 (18) | |
Cu1 | 0.5 | 0.43613 (4) | 0.25 | 0.01987 (15) | |
Br1 | 0.65536 (3) | 0.69166 (3) | 0.40942 (2) | 0.03295 (13) | |
Br2 | 0.5 | 0.99600 (5) | 0.25 | 0.0638 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0140 (14) | 0.0293 (18) | 0.0231 (17) | −0.0008 (13) | 0.0096 (13) | 0.0021 (14) |
C3 | 0.0171 (14) | 0.0279 (18) | 0.0259 (17) | −0.0019 (13) | 0.0090 (13) | −0.0002 (14) |
C4 | 0.0225 (17) | 0.0277 (19) | 0.041 (2) | −0.0066 (14) | 0.0132 (15) | −0.0078 (16) |
C5 | 0.027 (2) | 0.011 (2) | 0.054 (3) | 0 | 0.016 (2) | 0 |
C111 | 0.0150 (14) | 0.036 (2) | 0.0230 (17) | −0.0030 (14) | 0.0071 (12) | −0.0048 (15) |
C112 | 0.0273 (18) | 0.037 (2) | 0.0276 (19) | −0.0005 (16) | 0.0047 (15) | −0.0003 (16) |
C113 | 0.0256 (19) | 0.061 (3) | 0.0243 (19) | 0.0036 (18) | 0.0034 (15) | 0.0005 (18) |
C114 | 0.0222 (17) | 0.062 (3) | 0.030 (2) | −0.0106 (18) | 0.0086 (15) | −0.015 (2) |
C115 | 0.030 (2) | 0.047 (3) | 0.041 (2) | −0.0167 (18) | 0.0150 (18) | −0.017 (2) |
C116 | 0.0234 (17) | 0.036 (2) | 0.036 (2) | −0.0069 (15) | 0.0102 (15) | −0.0061 (17) |
C121 | 0.0212 (15) | 0.0196 (17) | 0.0260 (17) | 0.0014 (13) | 0.0070 (13) | −0.0005 (13) |
C122 | 0.0262 (18) | 0.036 (2) | 0.036 (2) | 0.0055 (16) | 0.0138 (16) | 0.0070 (17) |
C123 | 0.034 (2) | 0.044 (3) | 0.055 (3) | 0.0189 (19) | 0.018 (2) | 0.018 (2) |
C124 | 0.045 (2) | 0.034 (2) | 0.047 (2) | 0.0110 (19) | 0.015 (2) | 0.0116 (19) |
C125 | 0.054 (3) | 0.040 (2) | 0.057 (3) | 0.013 (2) | 0.034 (2) | 0.021 (2) |
C126 | 0.035 (2) | 0.036 (2) | 0.055 (3) | 0.0110 (17) | 0.027 (2) | 0.015 (2) |
C131 | 0.0173 (14) | 0.0229 (17) | 0.0209 (16) | 0.0055 (13) | 0.0057 (12) | 0.0038 (13) |
C132 | 0.0178 (15) | 0.0269 (17) | 0.0273 (18) | 0.0018 (13) | 0.0076 (13) | 0.0003 (14) |
C133 | 0.0203 (16) | 0.037 (2) | 0.0273 (18) | 0.0075 (15) | 0.0077 (14) | 0.0022 (15) |
C134 | 0.0307 (18) | 0.036 (2) | 0.0238 (18) | 0.0155 (16) | 0.0051 (14) | −0.0003 (16) |
C135 | 0.0262 (17) | 0.0257 (18) | 0.0227 (17) | 0.0044 (14) | −0.0026 (13) | 0.0007 (14) |
C136 | 0.0176 (14) | 0.0236 (17) | 0.0239 (17) | 0.0037 (13) | 0.0021 (12) | 0.0024 (13) |
C137 | 0.045 (3) | 0.070 (3) | 0.039 (2) | 0.012 (2) | 0.010 (2) | −0.018 (2) |
O2 | 0.0171 (11) | 0.0233 (13) | 0.0272 (12) | −0.0008 (9) | 0.0041 (9) | 0.0014 (10) |
P1 | 0.0145 (4) | 0.0208 (4) | 0.0234 (4) | −0.0004 (3) | 0.0068 (3) | −0.0008 (3) |
Cu1 | 0.0149 (3) | 0.0214 (3) | 0.0249 (3) | 0 | 0.0078 (2) | 0 |
Br1 | 0.0317 (2) | 0.0367 (2) | 0.0276 (2) | −0.00878 (16) | 0.00144 (15) | −0.00242 (16) |
Br2 | 0.0539 (4) | 0.0268 (3) | 0.1064 (7) | 0 | 0.0112 (4) | 0 |
C2—O2 | 1.252 (4) | C123—C124 | 1.396 (6) |
C2—C3 | 1.426 (5) | C123—H123 | 0.95 |
C2—C2i | 1.506 (6) | C124—C125 | 1.370 (6) |
C3—C4 | 1.387 (5) | C124—H124 | 0.95 |
C3—Br1 | 1.911 (4) | C125—C126 | 1.391 (6) |
C4—C5 | 1.382 (5) | C125—H125 | 0.95 |
C4—H4 | 0.95 | C126—H126 | 0.95 |
C5—C4i | 1.382 (5) | C131—C136 | 1.388 (5) |
C5—Br2 | 1.893 (5) | C131—C132 | 1.403 (4) |
C111—C112 | 1.384 (5) | C131—P1 | 1.820 (3) |
C111—C116 | 1.395 (5) | C132—C133 | 1.387 (5) |
C111—P1 | 1.824 (3) | C132—H132 | 0.95 |
C112—C113 | 1.400 (5) | C133—C134 | 1.381 (6) |
C112—H112 | 0.95 | C133—H133 | 0.95 |
C113—C114 | 1.375 (7) | C134—C135 | 1.405 (5) |
C113—H113 | 0.95 | C134—C137 | 1.486 (6) |
C114—C115 | 1.374 (7) | C135—C136 | 1.391 (5) |
C114—H114 | 0.95 | C135—H135 | 0.95 |
C115—C116 | 1.392 (6) | C136—H136 | 0.95 |
C115—H115 | 0.95 | C137—H13A | 0.98 |
C116—H116 | 0.95 | C137—H13B | 0.98 |
C121—C122 | 1.381 (5) | C137—H13C | 0.98 |
C121—C126 | 1.393 (5) | O2—Cu1 | 2.090 (2) |
C121—P1 | 1.830 (4) | P1—Cu1 | 2.2284 (9) |
C122—C123 | 1.398 (6) | Cu1—O2i | 2.090 (2) |
C122—H122 | 0.95 | Cu1—P1i | 2.2284 (9) |
O2—C2—C3 | 120.7 (3) | C124—C125—H125 | 119.7 |
O2—C2—C2i | 115.45 (19) | C126—C125—H125 | 119.7 |
C3—C2—C2i | 123.7 (2) | C125—C126—C121 | 120.9 (4) |
C4—C3—C2 | 133.0 (3) | C125—C126—H126 | 119.5 |
C4—C3—Br1 | 114.5 (3) | C121—C126—H126 | 119.5 |
C2—C3—Br1 | 112.5 (3) | C136—C131—C132 | 119.0 (3) |
C5—C4—C3 | 128.1 (4) | C136—C131—P1 | 118.8 (2) |
C5—C4—H4 | 115.9 | C132—C131—P1 | 122.0 (3) |
C3—C4—H4 | 115.9 | C133—C132—C131 | 119.9 (3) |
C4i—C5—C4 | 129.0 (5) | C133—C132—H132 | 120.1 |
C4i—C5—Br2 | 115.5 (2) | C131—C132—H132 | 120.1 |
C4—C5—Br2 | 115.5 (2) | C134—C133—C132 | 121.5 (3) |
C112—C111—C116 | 119.1 (3) | C134—C133—H133 | 119.2 |
C112—C111—P1 | 117.4 (3) | C132—C133—H133 | 119.2 |
C116—C111—P1 | 123.4 (3) | C133—C134—C135 | 118.5 (3) |
C111—C112—C113 | 120.2 (4) | C133—C134—C137 | 121.2 (4) |
C111—C112—H112 | 119.9 | C135—C134—C137 | 120.3 (4) |
C113—C112—H112 | 119.9 | C136—C135—C134 | 120.4 (3) |
C114—C113—C112 | 120.2 (4) | C136—C135—H135 | 119.8 |
C114—C113—H113 | 119.9 | C134—C135—H135 | 119.8 |
C112—C113—H113 | 119.9 | C131—C136—C135 | 120.6 (3) |
C113—C114—C115 | 119.9 (4) | C131—C136—H136 | 119.7 |
C113—C114—H114 | 120.1 | C135—C136—H136 | 119.7 |
C115—C114—H114 | 120.1 | C134—C137—H13A | 109.5 |
C114—C115—C116 | 120.6 (4) | C134—C137—H13B | 109.5 |
C114—C115—H115 | 119.7 | H13A—C137—H13B | 109.5 |
C116—C115—H115 | 119.7 | C134—C137—H13C | 109.5 |
C115—C116—C111 | 119.9 (4) | H13A—C137—H13C | 109.5 |
C115—C116—H116 | 120.1 | H13B—C137—H13C | 109.5 |
C111—C116—H116 | 120.1 | C2—O2—Cu1 | 116.1 (2) |
C122—C121—C126 | 118.3 (3) | C131—P1—C111 | 102.98 (15) |
C122—C121—P1 | 118.4 (3) | C131—P1—C121 | 101.98 (16) |
C126—C121—P1 | 123.2 (3) | C111—P1—C121 | 105.21 (17) |
C121—C122—C123 | 121.0 (4) | C131—P1—Cu1 | 116.55 (12) |
C121—C122—H122 | 119.5 | C111—P1—Cu1 | 111.62 (12) |
C123—C122—H122 | 119.5 | C121—P1—Cu1 | 116.91 (11) |
C122—C123—C124 | 119.9 (4) | O2—Cu1—O2i | 76.42 (13) |
C122—C123—H123 | 120.1 | O2—Cu1—P1 | 112.00 (7) |
C124—C123—H123 | 120.1 | O2i—Cu1—P1 | 108.19 (7) |
C125—C124—C123 | 119.3 (4) | O2—Cu1—P1i | 108.19 (7) |
C125—C124—H124 | 120.3 | O2i—Cu1—P1i | 112.00 (7) |
C123—C124—H124 | 120.3 | P1—Cu1—P1i | 128.18 (5) |
C124—C125—C126 | 120.6 (4) | ||
O2—C2—C3—C4 | 174.7 (4) | C134—C135—C136—C131 | 0.9 (5) |
C2i—C2—C3—C4 | −9.2 (7) | C3—C2—O2—Cu1 | 171.0 (2) |
O2—C2—C3—Br1 | −5.6 (4) | C2i—C2—O2—Cu1 | −5.4 (4) |
C2i—C2—C3—Br1 | 170.5 (3) | C136—C131—P1—C111 | −157.1 (3) |
C2—C3—C4—C5 | −1.1 (6) | C132—C131—P1—C111 | 27.6 (3) |
Br1—C3—C4—C5 | 179.2 (2) | C136—C131—P1—C121 | 94.0 (3) |
C3—C4—C5—C4i | 2.7 (3) | C132—C131—P1—C121 | −81.3 (3) |
C3—C4—C5—Br2 | −177.3 (3) | C136—C131—P1—Cu1 | −34.5 (3) |
C116—C111—C112—C113 | 0.9 (5) | C132—C131—P1—Cu1 | 150.1 (2) |
P1—C111—C112—C113 | 176.9 (3) | C112—C111—P1—C131 | 62.6 (3) |
C111—C112—C113—C114 | −2.6 (6) | C116—C111—P1—C131 | −121.6 (3) |
C112—C113—C114—C115 | 2.2 (6) | C112—C111—P1—C121 | 169.0 (3) |
C113—C114—C115—C116 | −0.1 (6) | C116—C111—P1—C121 | −15.1 (3) |
C114—C115—C116—C111 | −1.6 (6) | C112—C111—P1—Cu1 | −63.2 (3) |
C112—C111—C116—C115 | 1.2 (5) | C116—C111—P1—Cu1 | 112.6 (3) |
P1—C111—C116—C115 | −174.6 (3) | C122—C121—P1—C131 | −141.0 (3) |
C126—C121—C122—C123 | −0.4 (6) | C126—C121—P1—C131 | 36.4 (4) |
P1—C121—C122—C123 | 177.2 (4) | C122—C121—P1—C111 | 111.8 (3) |
C121—C122—C123—C124 | −0.2 (7) | C126—C121—P1—C111 | −70.8 (4) |
C122—C123—C124—C125 | 0.1 (8) | C122—C121—P1—Cu1 | −12.7 (3) |
C123—C124—C125—C126 | 0.4 (8) | C126—C121—P1—Cu1 | 164.8 (3) |
C124—C125—C126—C121 | −1.0 (8) | C2—O2—Cu1—O2i | 2.14 (18) |
C122—C121—C126—C125 | 0.9 (7) | C2—O2—Cu1—P1 | −102.3 (2) |
P1—C121—C126—C125 | −176.5 (4) | C2—O2—Cu1—P1i | 111.2 (2) |
C136—C131—C132—C133 | −2.1 (5) | C131—P1—Cu1—O2 | 26.45 (14) |
P1—C131—C132—C133 | 173.3 (3) | C111—P1—Cu1—O2 | 144.35 (15) |
C131—C132—C133—C134 | 0.8 (6) | C121—P1—Cu1—O2 | −94.47 (15) |
C132—C133—C134—C135 | 1.3 (6) | C131—P1—Cu1—O2i | −55.86 (14) |
C132—C133—C134—C137 | −176.7 (4) | C111—P1—Cu1—O2i | 62.04 (15) |
C133—C134—C135—C136 | −2.1 (5) | C121—P1—Cu1—O2i | −176.78 (14) |
C137—C134—C135—C136 | 175.8 (4) | C131—P1—Cu1—P1i | 164.68 (12) |
C132—C131—C136—C135 | 1.2 (5) | C111—P1—Cu1—P1i | −77.41 (13) |
P1—C131—C136—C135 | −174.3 (3) | C121—P1—Cu1—P1i | 43.76 (13) |
Symmetry code: (i) −x+1, y, −z+1/2. |
Cg2 and Cg3 are the centroids of the C121–C126 and C131–C136 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C136—H136···O2 | 0.95 | 2.52 | 3.365 (4) | 149 |
C115—H115···Cg3ii | 0.95 | 2.86 | 3.621 (4) | 138 |
C137—H13A···Cg2iii | 0.98 | 3.18 | 4.144 (6) | 168 |
Symmetry codes: (ii) x−1/2, y−1/2, z; (iii) x, −y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C7H2Br3O2)(C19H17P)2] |
Mr | 973.95 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 100 |
a, b, c (Å) | 15.4522 (8), 13.9073 (8), 19.3269 (10) |
β (°) | 103.862 (3) |
V (Å3) | 4032.4 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.63 |
Crystal size (mm) | 0.18 × 0.09 × 0.06 |
Data collection | |
Diffractometer | Bruker X8 APEXII 4K Kappa CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.686, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27602, 5022, 3970 |
Rint | 0.053 |
(sin θ/λ)max (Å−1) | 0.669 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.130, 1.04 |
No. of reflections | 5022 |
No. of parameters | 241 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0661P)2 + 16.6643P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.51, −1.57 |
Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).
Cg2 and Cg3 are the centroids of the C121–C126 and C131–C136 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C136—H136···O2 | 0.95 | 2.52 | 3.365 (4) | 149 |
C115—H115···Cg3i | 0.95 | 2.86 | 3.621 (4) | 138.1 |
C137—H13A···Cg2ii | 0.98 | 3.18 | 4.144 (6) | 167.6 |
Symmetry codes: (i) x−1/2, y−1/2, z; (ii) x, −y+1, z+1/2. |
Acknowledgements
Professors G. Steyland and A. Roodt, University of the Free State, and Mr Renier Koen are thanked for the data collection. Financial assistance from the University of the Free State Strategic Academic Cluster Initiative, SASOL, the South African NationalResearch Foundation (SA–NRF/THRIP) and the Inkaba yeAfrika Research Initiative is gratefully acknowledged. Part of this material is based on work supported by the SA–NRF/THRIP under grant No. GUN 2068915. Opinions, findings,conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA–NRF.
References
Brandenburg, K. & Putz, H. (2005). Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin. USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chipperfield, J. R., Clark, S., Elliott, J. & Sinn, E. (1998). Chem. Commun. pp. 195–196. Web of Science CSD CrossRef Google Scholar
Crous, R., Datt, M., Foster, D., Bennie, L., Steenkamp, C., Huyser, J., Kirsten, L., Steyl, G. & Roodt, A. (2005). Dalton Trans. pp. 1108–1115. Web of Science CSD CrossRef Google Scholar
Dewar, M. J. S. (1945). Nature (London), 155, 141–145. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hasegawa, M., Inomaki, Y., Inayoshi, T., Mosbi, T. & Kobayashi, M. (1997). Inorg. Chim. Acta, 257, 259–264. CSD CrossRef CAS Web of Science Google Scholar
Hill, T. N. & Steyl, G. (2008). Acta Cryst. E64, m1580–m1581. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ho, D. M. (2010). Acta Cryst. C66, m294–m299. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ho, D. M., Berardini, M. E. & Arvanitis, G. M. (2009). Acta Cryst. C65, m391–m394. Web of Science CSD CrossRef IUCr Journals Google Scholar
Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steyl, G. (2007). Acta Cryst. E63, m2613–m2614. Web of Science CSD CrossRef IUCr Journals Google Scholar
Steyl, G. (2009). Acta Cryst. E65, m448. Web of Science CSD CrossRef IUCr Journals Google Scholar
Steyl, G. & Hill, T. N. (2009). Acta Cryst. E65, m233. Web of Science CSD CrossRef IUCr Journals Google Scholar
Steyl, G. & Roodt, A. (2006). S. Afr. J. Chem. 59, 21–27. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Tropolone and its derivatives have been of interest ever since their first discovery in the early 1940's (Dewar, 1945); they are known to have applications in both pharmacology (Hill & Steyl, 2008) and catalysis (Crous et al., 2005). Bis troplolonato copper(II) complexes are most frequently reported (Ho, 2010; Ho et al., 2009; Chipperfield et al., 1998; Hasegawa et al., 1997). Recently, reseach in this area has been extended to include copper(I) phosphine metal complexes and the effect the troplonato ligand has on the solid state and chemical behaviour of these complexes (Steyl, 2007; Steyl & Roodt, 2006; Roodt et al., 2003). In this paper, the structure of the tropolonato-bis[diphenyl(p-tolyl)-phosphine]copper(I) complex is reported (Fig. 1).
The Cu—O and Cu—P bond distances were found to be 2.090 (1) Å and 2.229 (1) Å respectively and are well within comparable ranges for copper(I) phosphine complexes. the bond angles about the Cu atom show significantly distorted tetrahedral coordination (Table 1). The bidentate bite angle O2—Cu—O2i observed at 76.42 (9)° is close to analogous angles in previously reported structures (Steyl, 2009).
The title compound (I) displays intramolecular C—H···Br interactions with a distance of 3.4666 (5) Å as seen in Figure 2. Figure 3 illustrates the packing diagram for compound (I), a zigzag pattern is adopted with inverted repeating units creating diagonals in all directions. This intricate design is achieved though numerous C—H···π itermolecular interactions see Figure 4. These interactions occur between methyl H atoms of the p-tolyl and phenyl π, phenyl H to p-tolyl π, phenyl H to phenyl π and p-tolyl π to p-tolyl The C—H···π itermolecular interactions range from 3.1816 (1) Å - 3.7267 (2) Å.