organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3204-o3205

2-Cyano-3-(2,3,6,7-tetra­hydro-1H,5H-benzo[ij]quinolizin-9-yl)prop-2-enoic acid di­methyl sulfoxide monosolvate

aDepartment of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
*Correspondence e-mail: hpy1@psu.edu

(Received 10 October 2012; accepted 18 October 2012; online 24 October 2012)

In dimethyl sulfoxide solvated 9-(2-carb­oxy-2-cyano­vin­yl)julolidine, C16H16N2O2·C2H6OS, the essentially planar –CH=(CN)–CO2H substituent (r.m.s. deviation = 0.014 Å) is almost coplanar with respect to the benzene ring, the dihedral angle between the two planes being 0.48 (2)°. The conformations of the fused, non-aromatic rings were found to be half-chair. In the crystal, the acid molecule forms a hydrogen bond to the O atom of the solvent mol­ecule. The acid mol­ecule is disordered over two positions with respect to the methyl­ene C atoms in a 1:1 ratio. The crystal studied was found to be a racemic twin.

Related literature

For the synthesis of 9-(2-carb­oxy-2-cyano­vin­yl)julolidine, commonly known as CCVJ, see: Rumble et al. (2012[Rumble, C., Rich, K., He, G. & Maroncelli, M. (2012). J. Phys. Chem. A, doi: 10.1021/jp309019g.]). For a related mol­ecule, see: Liang et al. (2009[Liang, M., Yennawar, H. & Maroncelli, M. (2009). Acta Cryst. E65, o1687.]). For fluorescent-rotor probe studies of CCVJ, see: Sawada et al. (1992[Sawada, S., Iio, T., Hayashi, Y. & Takahashi, S. (1992). Anal. Biochem. 204, 110-117.]); Haidekker et al. (2001[Haidekker, M. A., Ling, T., Anglo, M., Stevens, H. Y., Frangos, J. A. & Theodorakis, E. A. (2001). Chem. Biol. 8, 123-131.]). For other applications, see: Iwaki et al. (1993[Iwaki, T., Torigoe, C., Noji, M. & Nakanishi, M. (1993). Biochemistry, 32, 7589-7592.]); Haidekker et al. (2002[Haidekker, M. A., Tsai, A. G., Brady, T., Stevens, H. Y., Frangos, J. A., Theodorakis, E. & Intaglietta, M. (2002). Am. J. Physiol. Heart Circ. Physiol. 282, H1609-H1614.]); Tanaka et al. (2008[Tanaka, K., Inafuku, K. & Chujo, Y. (2008). Bioorg. Med. Chem. 16, 10029-10033.]); Hawe et al. (2010[Hawe, A., Filipe, V. & Jiskoot, W. (2010). Pharm. Res. 27, 314-326.]); Levitt et al. (2011[Levitt, J. A., Chung, P.-H., Kuimova, M. K., Yahioglu, G., Wang, Y., Qu, J.-L. & Suhling, K. (2011). ChemPhysChem, 12, 662-672.]), Dishari & Hickner (2012[Dishari, S. K. & Hickner, M. A. (2012). ACS Macro Lett. 1, 291-295.]); Howell et al. (2012[Howell, S., Dakanali, M., Theodorakis, E. A. & Haidekker, M. A. (2012). J. Fluoresc. 22, 457-465.]). For a mechanismic study, see: Rumble et al. (2012[Rumble, C., Rich, K., He, G. & Maroncelli, M. (2012). J. Phys. Chem. A, doi: 10.1021/jp309019g.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O2·C2H6OS

  • Mr = 346.44

  • Monoclinic, P 21

  • a = 10.215 (3) Å

  • b = 7.4588 (19) Å

  • c = 11.819 (3) Å

  • β = 100.170 (5)°

  • V = 886.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 298 K

  • 0.20 × 0.16 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.961, Tmax = 0.971

  • 5962 measured reflections

  • 3443 independent reflections

  • 2520 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.146

  • S = 1.02

  • 3443 reflections

  • 239 parameters

  • 45 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1096 Friedel pairs

  • Flack parameter: 0.51 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.85 (3) 1.83 (3) 2.609 (2) 153 (4)

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

9-(2-carboxy-2-cyanovinyl)julolidine, commonly known as CCVJ, is a fluorescent rotor probe (Sawada et al., 1992; Haidekker et al., 2001) whose fluorescence intensity is strongly modulated by the fluidity of its surroundings. As such, it has been used for studying local fluidity in a variety of contexts (Iwaki et al., 1993; Haidekker et al., 2002; Tanaka et al., 2008; Hawe et al., 2010; Levitt et al., 2011; Dishari & Hickner, 2012; Howell et al., 2012). We have recently studied the rotatory mechanism behind CCVJ's environmental sensitivity, which we showed is an excited-state isomerization (Rumble et al., 2012). Herein we report the crystal structure of CCVJ which we determined in support of this photochemical study.

Related literature top

For the synthesis of 9-(2-carboxy-2-cyanovinyl)julolidine, commonly known as CCVJ, see: Rumble et al. (2012). For a related molecule, see: Liang et al. (2009). For fluorescent-rotor probe studies of CCVJ, see: Sawada et al. (1992); Haidekker et al. (2001). For other applications, see: Iwaki et al. (1993); Haidekker et al. (2002); Tanaka et al. (2008); Hawe et al. (2010); Levitt et al. (2011), Dishari & Hickner (2012); Howell et al. (2012). For a mechanismic study, see: Rumble et al. (2012).

Experimental top

CCVJ was synthesized by reaction of 9-formyljulolidine and cyanoacetic acid as described by Rumble et al. (2012) and purified by silica gel flash chromatography. Orange colored crystals were obtained by slow evaporation of its solution in toluene with a small quantity of DMSO added to increase the solubility, at room temperature.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H 0.93 and 0.97 Å in a riding-model approximation. The acid hydrogen was located in a difference Fourier map and was freely refined.

The acid is disordered over two positions in respect of the five methylene carbons. The occupancy could not be refined so that the disorder was assumed to be a 1:1 type of disorder. Pairs of 1,2-related C–C distances were restrained to within 0.01 Å of each other, and the temperature factors of the primed atoms were set to those of the unprimed ones. Additionally, the anisotropic temperature factors were tightly restrained to be nearly isotropic.

The Flack parameter, refined on 1096 Friedel pairs, was 0.5, which implied that the crystal studied is a racemic twin that crystallizes in a polar space group. The racemic nature also supported the 1:1 type of disorder.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) showing 50% probability displacement ellipsoids; the disorder is not shown.
2-Cyano-3-(2,3,6,7-tetrahydro-1H,5H-benzo[ij]quinolizin- 9-yl)prop-2-enoic acid dimethyl sulfoxide monosolvate top
Crystal data top
C16H16N2O2·C2H6OSF(000) = 368
Mr = 346.44Dx = 1.298 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1427 reflections
a = 10.215 (3) Åθ = 2.4–26.3°
b = 7.4588 (19) ŵ = 0.20 mm1
c = 11.819 (3) ÅT = 298 K
β = 100.170 (5)°Pyramid, orange
V = 886.4 (4) Å30.20 × 0.16 × 0.15 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3443 independent reflections
Radiation source: fine-focus sealed tube2520 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1013
Tmin = 0.961, Tmax = 0.971k = 98
5962 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0864P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3443 reflectionsΔρmax = 0.25 e Å3
239 parametersΔρmin = 0.23 e Å3
45 restraintsAbsolute structure: Flack (1983), 1096 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.51 (15)
Crystal data top
C16H16N2O2·C2H6OSV = 886.4 (4) Å3
Mr = 346.44Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.215 (3) ŵ = 0.20 mm1
b = 7.4588 (19) ÅT = 298 K
c = 11.819 (3) Å0.20 × 0.16 × 0.15 mm
β = 100.170 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3443 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2520 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.971Rint = 0.017
5962 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.146Δρmax = 0.25 e Å3
S = 1.02Δρmin = 0.23 e Å3
3443 reflectionsAbsolute structure: Flack (1983), 1096 Friedel pairs
239 parametersAbsolute structure parameter: 0.51 (15)
45 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S11.57938 (6)0.5022 (3)0.08482 (5)0.0703 (3)
O11.23541 (15)0.4978 (8)0.16187 (12)0.0620 (5)
H11.301 (3)0.535 (6)0.134 (3)0.082 (11)*
O21.37748 (15)0.5038 (7)0.32895 (12)0.0644 (5)
O31.43031 (17)0.5070 (9)0.04602 (13)0.0831 (7)
N10.80423 (18)0.5001 (7)0.76083 (14)0.0546 (5)
N20.9202 (2)0.5020 (10)0.19413 (15)0.0694 (7)
C10.8895 (2)0.5020 (8)0.68381 (15)0.0433 (5)
C21.0286 (2)0.4971 (8)0.72132 (16)0.0483 (5)
C31.0773 (10)0.478 (2)0.8505 (5)0.057 (2)0.50
H3A1.14990.39290.86280.069*0.50
H3B1.11260.59310.88020.069*0.50
C40.9831 (10)0.4241 (15)0.9135 (7)0.0588 (12)0.50
H4A1.01860.44330.99430.071*0.50
H4B0.96940.29620.90240.071*0.50
C50.8488 (13)0.516 (3)0.8856 (6)0.061 (2)0.50
H5A0.78570.45930.92650.073*0.50
H5B0.85680.64160.90790.073*0.50
C60.6611 (6)0.517 (3)0.7224 (12)0.063 (2)0.50
H6A0.63650.64300.71960.076*0.50
H6B0.61460.45780.77670.076*0.50
C70.6201 (10)0.4346 (16)0.6046 (9)0.0591 (13)0.50
H7A0.52450.44170.57990.071*0.50
H7B0.64700.30990.60490.071*0.50
C80.6920 (6)0.5454 (16)0.5261 (10)0.0564 (12)0.50
H8A0.67740.67260.53590.068*0.50
H8B0.66190.51380.44610.068*0.50
C3'1.0888 (10)0.534 (2)0.8468 (5)0.057 (2)0.50
H3'A1.14760.43560.87520.069*0.50
H3'B1.14260.64180.85020.069*0.50
C4'0.9974 (9)0.5554 (15)0.9189 (6)0.0588 (12)0.50
H4'A0.98930.68290.93210.071*0.50
H4'B1.03530.50200.99220.071*0.50
C5'0.8576 (13)0.481 (3)0.8843 (6)0.061 (2)0.50
H5'A0.85800.35500.90470.073*0.50
H5'B0.79900.54270.92770.073*0.50
C6'0.6599 (6)0.488 (3)0.7296 (11)0.063 (2)0.50
H6'A0.61970.56610.77920.076*0.50
H6'B0.63270.36580.74260.076*0.50
C7'0.6091 (9)0.5376 (16)0.6058 (8)0.0591 (13)0.50
H7'A0.61010.66710.59830.071*0.50
H7'B0.51760.49770.58440.071*0.50
C8'0.6919 (6)0.4551 (16)0.5238 (10)0.0564 (12)0.50
H8'A0.67900.32620.52070.068*0.50
H8'B0.66330.50280.44700.068*0.50
C90.8385 (2)0.4974 (10)0.56447 (17)0.0531 (6)
C100.9249 (2)0.4991 (9)0.48771 (16)0.0521 (6)
H100.89010.49970.40950.062*
C111.06346 (19)0.5000 (9)0.52212 (15)0.0432 (5)
C121.1110 (2)0.4975 (9)0.64131 (16)0.0478 (5)
H121.20240.49610.66710.057*
C131.15899 (19)0.4997 (8)0.44699 (15)0.0441 (5)
H131.24690.49960.48490.053*
C141.14494 (19)0.4994 (8)0.32993 (15)0.0422 (5)
C151.0203 (2)0.4995 (9)0.25512 (16)0.0456 (5)
C161.2650 (2)0.5071 (8)0.27592 (16)0.0446 (5)
C171.6110 (5)0.6841 (7)0.1863 (4)0.0650 (14)
H17A1.59390.79620.14650.098*
H17B1.70220.68020.22430.098*
H17C1.55390.67280.24230.098*
C181.6183 (6)0.3239 (8)0.1791 (5)0.0809 (18)
H18A1.60650.21320.13710.121*
H18B1.56080.32570.23520.121*
H18C1.70910.33410.21720.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0427 (3)0.1230 (6)0.0511 (3)0.0016 (10)0.0244 (3)0.0008 (10)
O10.0391 (8)0.1122 (15)0.0383 (7)0.008 (3)0.0162 (6)0.002 (2)
O20.0385 (8)0.1109 (14)0.0454 (8)0.009 (3)0.0118 (6)0.004 (3)
O30.0439 (9)0.164 (2)0.0435 (8)0.004 (3)0.0133 (7)0.016 (3)
N10.0482 (10)0.0773 (13)0.0434 (9)0.007 (3)0.0220 (8)0.010 (3)
N20.0437 (11)0.121 (2)0.0445 (10)0.016 (3)0.0112 (8)0.008 (3)
C10.0485 (11)0.0469 (11)0.0388 (9)0.004 (3)0.0192 (8)0.002 (3)
C20.0487 (12)0.0634 (13)0.0344 (9)0.001 (3)0.0120 (8)0.004 (3)
C30.056 (2)0.080 (7)0.0357 (11)0.017 (4)0.0096 (11)0.016 (4)
C40.075 (3)0.072 (3)0.0313 (13)0.003 (4)0.0137 (14)0.016 (3)
C50.066 (2)0.082 (6)0.0405 (11)0.005 (5)0.0258 (11)0.013 (3)
C60.0490 (13)0.082 (5)0.0656 (19)0.009 (4)0.0303 (11)0.002 (4)
C70.0405 (18)0.065 (4)0.0741 (18)0.005 (4)0.0173 (14)0.002 (5)
C80.0441 (14)0.071 (4)0.0548 (14)0.001 (6)0.0105 (11)0.014 (6)
C3'0.056 (2)0.080 (7)0.0357 (11)0.017 (4)0.0096 (11)0.016 (4)
C4'0.075 (3)0.072 (3)0.0313 (13)0.003 (4)0.0137 (14)0.016 (3)
C5'0.066 (2)0.082 (6)0.0405 (11)0.005 (5)0.0258 (11)0.013 (3)
C6'0.0490 (13)0.082 (5)0.0656 (19)0.009 (4)0.0303 (11)0.002 (4)
C7'0.0405 (18)0.065 (4)0.0741 (18)0.005 (4)0.0173 (14)0.002 (5)
C8'0.0441 (14)0.071 (4)0.0548 (14)0.001 (6)0.0105 (11)0.014 (6)
C90.0401 (11)0.0803 (16)0.0406 (10)0.003 (3)0.0118 (9)0.014 (3)
C100.0436 (11)0.0809 (16)0.0331 (9)0.003 (3)0.0107 (8)0.016 (3)
C110.0419 (11)0.0534 (12)0.0368 (9)0.005 (3)0.0134 (8)0.009 (2)
C120.0394 (10)0.0665 (14)0.0383 (9)0.008 (3)0.0092 (8)0.006 (3)
C130.0383 (10)0.0566 (12)0.0390 (9)0.005 (3)0.0110 (8)0.003 (3)
C140.0365 (10)0.0542 (12)0.0382 (9)0.008 (3)0.0128 (7)0.003 (3)
C150.0395 (11)0.0657 (14)0.0351 (9)0.007 (3)0.0164 (8)0.004 (3)
C160.0391 (11)0.0596 (14)0.0373 (9)0.005 (3)0.0130 (8)0.005 (3)
C170.041 (3)0.089 (4)0.066 (3)0.003 (2)0.013 (2)0.006 (2)
C180.065 (4)0.079 (3)0.103 (4)0.011 (3)0.025 (3)0.034 (3)
Geometric parameters (Å, º) top
S1—O31.5112 (18)C3'—C4'1.380 (7)
S1—C181.736 (6)C3'—H3'A0.9700
S1—C171.802 (5)C3'—H3'B0.9700
O1—C161.330 (2)C4'—C5'1.520 (11)
O1—H10.85 (3)C4'—H4'A0.9700
O2—C161.208 (2)C4'—H4'B0.9700
N1—C11.366 (2)C5'—H5'A0.9700
N1—C6'1.458 (6)C5'—H5'B0.9700
N1—C61.458 (6)C6'—C7'1.511 (10)
N1—C51.470 (6)C6'—H6'A0.9700
N1—C5'1.472 (6)C6'—H6'B0.9700
N2—C151.142 (3)C7'—C8'1.525 (6)
C1—C21.412 (3)C7'—H7'A0.9700
C1—C91.415 (3)C7'—H7'B0.9700
C2—C121.373 (3)C8'—C91.522 (6)
C2—C3'1.527 (6)C8'—H8'A0.9700
C2—C31.527 (6)C8'—H8'B0.9700
C3—C41.377 (7)C9—C101.374 (3)
C3—H3A0.9700C10—C111.402 (3)
C3—H3B0.9700C10—H100.9300
C4—C51.518 (11)C11—C121.407 (3)
C4—H4A0.9700C11—C131.431 (2)
C4—H4B0.9700C12—H120.9300
C5—H5A0.9700C13—C141.366 (2)
C5—H5B0.9700C13—H130.9300
C6—C71.513 (10)C14—C151.416 (3)
C6—H6A0.9700C14—C161.480 (3)
C6—H6B0.9700C17—H17A0.9600
C7—C81.525 (7)C17—H17B0.9600
C7—H7A0.9700C17—H17C0.9600
C7—H7B0.9700C18—H18A0.9600
C8—C91.528 (6)C18—H18B0.9600
C8—H8A0.9700C18—H18C0.9600
C8—H8B0.9700
O3—S1—C18108.5 (3)C5'—C4'—H4'A107.3
O3—S1—C17103.7 (3)C3'—C4'—H4'B107.3
C18—S1—C1798.95 (13)C5'—C4'—H4'B107.3
C16—O1—H1109 (2)H4'A—C4'—H4'B106.9
C1—N1—C6'124.5 (6)N1—C5'—C4'113.4 (10)
C1—N1—C6120.9 (6)N1—C5'—H5'A108.9
C1—N1—C5123.1 (6)C4'—C5'—H5'A108.9
C6'—N1—C5112.3 (8)N1—C5'—H5'B108.9
C6—N1—C5114.9 (8)C4'—C5'—H5'B108.9
C1—N1—C5'119.6 (6)H5'A—C5'—H5'B107.7
C6'—N1—C5'115.2 (8)N1—C6'—C7'112.9 (10)
C6—N1—C5'119.5 (8)N1—C6'—H6'A109.0
N1—C1—C2120.98 (17)C7'—C6'—H6'A109.0
N1—C1—C9119.88 (19)N1—C6'—H6'B109.0
C2—C1—C9119.02 (16)C7'—C6'—H6'B109.0
C12—C2—C1119.30 (17)H6'A—C6'—H6'B107.8
C12—C2—C3'118.5 (4)C6'—C7'—C8'112.4 (12)
C1—C2—C3'120.7 (4)C6'—C7'—H7'A109.1
C12—C2—C3123.9 (4)C8'—C7'—H7'A109.1
C1—C2—C3116.6 (4)C6'—C7'—H7'B109.1
C4—C3—C2115.6 (7)C8'—C7'—H7'B109.1
C4—C3—H3A108.4H7'A—C7'—H7'B107.8
C2—C3—H3A108.4C9—C8'—C7'109.9 (6)
C4—C3—H3B108.4C9—C8'—H8'A109.7
C2—C3—H3B108.4C7'—C8'—H8'A109.7
H3A—C3—H3B107.4C9—C8'—H8'B109.7
C3—C4—C5116.1 (12)C7'—C8'—H8'B109.7
C3—C4—H4A108.3H8'A—C8'—H8'B108.2
C5—C4—H4A108.3C10—C9—C1119.46 (19)
C3—C4—H4B108.3C10—C9—C8'120.3 (5)
C5—C4—H4B108.3C1—C9—C8'119.2 (5)
H4A—C4—H4B107.4C10—C9—C8120.8 (5)
N1—C5—C4106.8 (9)C1—C9—C8117.3 (5)
N1—C5—H5A110.4C9—C10—C11122.84 (17)
C4—C5—H5A110.4C9—C10—H10118.6
N1—C5—H5B110.4C11—C10—H10118.6
C4—C5—H5B110.4C10—C11—C12116.29 (16)
H5A—C5—H5B108.6C10—C11—C13125.74 (17)
N1—C6—C7110.5 (10)C12—C11—C13117.96 (18)
N1—C6—H6A109.5C2—C12—C11122.99 (19)
C7—C6—H6A109.5C2—C12—H12118.5
N1—C6—H6B109.5C11—C12—H12118.5
C7—C6—H6B109.5C14—C13—C11131.90 (19)
H6A—C6—H6B108.1C14—C13—H13114.1
C6—C7—C8104.7 (13)C11—C13—H13114.1
C6—C7—H7A110.8C13—C14—C15123.68 (17)
C8—C7—H7A110.8C13—C14—C16119.35 (18)
C6—C7—H7B110.8C15—C14—C16116.93 (16)
C8—C7—H7B110.8N2—C15—C14179.0 (6)
H7A—C7—H7B108.9O2—C16—O1123.34 (18)
C7—C8—C9104.1 (7)O2—C16—C14124.06 (17)
C7—C8—H8A110.9O1—C16—C14112.20 (18)
C9—C8—H8A110.9S1—C17—H17A109.5
C7—C8—H8B110.9S1—C17—H17B109.5
C9—C8—H8B110.9H17A—C17—H17B109.5
H8A—C8—H8B108.9S1—C17—H17C109.5
C4'—C3'—C2114.8 (7)H17A—C17—H17C109.5
C4'—C3'—H3'A108.6H17B—C17—H17C109.5
C2—C3'—H3'A108.6S1—C18—H18A109.5
C4'—C3'—H3'B108.6S1—C18—H18B109.5
C2—C3'—H3'B108.6H18A—C18—H18B109.5
H3'A—C3'—H3'B107.5S1—C18—H18C109.5
C3'—C4'—C5'119.9 (9)H18A—C18—H18C109.5
C3'—C4'—H4'A107.3H18B—C18—H18C109.5
C6'—N1—C1—C2173.9 (13)C3'—C4'—C5'—N138 (2)
C6—N1—C1—C2175.9 (12)C1—N1—C6'—C7'19 (2)
C5—N1—C1—C28.1 (14)C6—N1—C6'—C7'51 (6)
C5'—N1—C1—C23.9 (13)C5—N1—C6'—C7'159.2 (15)
C6'—N1—C1—C92.1 (15)C5'—N1—C6'—C7'170.7 (15)
C6—N1—C1—C98.2 (15)N1—C6'—C7'—C8'44 (2)
C5—N1—C1—C9175.9 (12)C6'—C7'—C8'—C951.9 (15)
C5'—N1—C1—C9172.0 (11)N1—C1—C9—C10179.9 (6)
N1—C1—C2—C12179.4 (6)C2—C1—C9—C103.9 (10)
C9—C1—C2—C123.4 (9)N1—C1—C9—C8'11.4 (11)
N1—C1—C2—C3'14.6 (11)C2—C1—C9—C8'164.6 (7)
C9—C1—C2—C3'169.4 (9)N1—C1—C9—C817.6 (10)
N1—C1—C2—C33.6 (11)C2—C1—C9—C8166.4 (7)
C9—C1—C2—C3172.4 (9)C7'—C8'—C9—C10155.4 (9)
C12—C2—C3—C4160.1 (10)C7'—C8'—C9—C136.2 (13)
C1—C2—C3—C415.5 (16)C7'—C8'—C9—C856.6 (13)
C3'—C2—C3—C4124 (4)C7—C8—C9—C10149.4 (9)
C2—C3—C4—C545.1 (18)C7—C8—C9—C148.3 (11)
C1—N1—C5—C433.8 (19)C7—C8—C9—C8'52.9 (15)
C6'—N1—C5—C4148.0 (15)C1—C9—C10—C111.9 (10)
C6—N1—C5—C4157.8 (14)C8'—C9—C10—C11166.4 (8)
C5'—N1—C5—C440 (5)C8—C9—C10—C11163.8 (7)
C3—C4—C5—N152.5 (19)C9—C10—C11—C120.5 (9)
C1—N1—C6—C732 (2)C9—C10—C11—C13179.2 (7)
C6'—N1—C6—C784 (7)C1—C2—C12—C110.9 (9)
C5—N1—C6—C7159.6 (14)C3'—C2—C12—C11167.3 (9)
C5'—N1—C6—C7148.5 (14)C3—C2—C12—C11174.6 (9)
N1—C6—C7—C862.6 (16)C10—C11—C12—C21.0 (9)
C6—C7—C8—C968.9 (11)C13—C11—C12—C2179.8 (6)
C12—C2—C3'—C4'171.6 (9)C10—C11—C13—C140.4 (10)
C1—C2—C3'—C4'5.5 (15)C12—C11—C13—C14179.1 (6)
C3—C2—C3'—C4'75 (3)C11—C13—C14—C150.0 (10)
C2—C3'—C4'—C5'20.9 (17)C11—C13—C14—C16177.4 (7)
C1—N1—C5'—C4'28.6 (19)C13—C14—C16—O24.2 (10)
C6'—N1—C5'—C4'160.5 (15)C15—C14—C16—O2178.3 (6)
C6—N1—C5'—C4'151.2 (15)C13—C14—C16—O1177.2 (6)
C5—N1—C5'—C4'83 (7)C15—C14—C16—O15.3 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.85 (3)1.83 (3)2.609 (2)153 (4)

Experimental details

Crystal data
Chemical formulaC16H16N2O2·C2H6OS
Mr346.44
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)10.215 (3), 7.4588 (19), 11.819 (3)
β (°) 100.170 (5)
V3)886.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.20 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.961, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
5962, 3443, 2520
Rint0.017
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.146, 1.02
No. of reflections3443
No. of parameters239
No. of restraints45
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.23
Absolute structureFlack (1983), 1096 Friedel pairs
Absolute structure parameter0.51 (15)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.85 (3)1.83 (3)2.609 (2)153 (4)
 

Acknowledgements

This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy through grant DE–FG02-09ER16118. We also acknowledge NSF funding (CHEM-0131112) for the X-ray diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDishari, S. K. & Hickner, M. A. (2012). ACS Macro Lett. 1, 291–295.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHaidekker, M. A., Ling, T., Anglo, M., Stevens, H. Y., Frangos, J. A. & Theodorakis, E. A. (2001). Chem. Biol. 8, 123–131.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHaidekker, M. A., Tsai, A. G., Brady, T., Stevens, H. Y., Frangos, J. A., Theodorakis, E. & Intaglietta, M. (2002). Am. J. Physiol. Heart Circ. Physiol. 282, H1609–H1614.  Web of Science PubMed CAS Google Scholar
First citationHawe, A., Filipe, V. & Jiskoot, W. (2010). Pharm. Res. 27, 314–326.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHowell, S., Dakanali, M., Theodorakis, E. A. & Haidekker, M. A. (2012). J. Fluoresc. 22, 457–465.  Web of Science CrossRef CAS PubMed Google Scholar
First citationIwaki, T., Torigoe, C., Noji, M. & Nakanishi, M. (1993). Biochemistry, 32, 7589–7592.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLevitt, J. A., Chung, P.-H., Kuimova, M. K., Yahioglu, G., Wang, Y., Qu, J.-L. & Suhling, K. (2011). ChemPhysChem, 12, 662–672.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiang, M., Yennawar, H. & Maroncelli, M. (2009). Acta Cryst. E65, o1687.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRumble, C., Rich, K., He, G. & Maroncelli, M. (2012). J. Phys. Chem. A, doi: 10.1021/jp309019g.  Google Scholar
First citationSawada, S., Iio, T., Hayashi, Y. & Takahashi, S. (1992). Anal. Biochem. 204, 110–117.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, K., Inafuku, K. & Chujo, Y. (2008). Bioorg. Med. Chem. 16, 10029–10033.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3204-o3205
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds