metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[aqua­(2,2′-bi­pyridine-κ2N,N′)copper(II)]-μ-furan-2,5-di­carboxyl­ato-κ2O2:O5] dihydrate]

aSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: fly012345@sohu.com

(Received 15 October 2012; accepted 21 October 2012; online 27 October 2012)

In the crystal structure of the title compound, {[Cu(C6H2O5)(C10H8N2)(H2O)]·2H2O}n, an infinite chain parallel to [110] is formed by the linking of Cu(H2O)(2,2′-bipyridine) units through a furan-2,5-dicarboxyl­ate bridge. The CuII atom shows a square-pyramidal geometry, with one furan-2,5-dicarboxyl­ate O atom in the apical position. The dihedral angle between the planes of the furan ring and the bipyridine mol­ecule is 83.88 (7)°. Owater—H⋯O hydrogen bonds connect adjacent chains, generating a layer motif parallel to (001).

Related literature

For a related structure, see: Li et al. (2012[Li, Y.-F., Xu, Y., Qin, X.-L., Yuan, Y.-P. & Gao, W.-Y. (2012). Acta Cryst. E68, m1140.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C6H2O5)(C10H8N2)(H2O)]·2H2O

  • Mr = 427.86

  • Triclinic, [P \overline 1]

  • a = 8.8621 (18) Å

  • b = 8.9016 (18) Å

  • c = 12.523 (3) Å

  • α = 88.33 (3)°

  • β = 69.31 (3)°

  • γ = 66.85 (3)°

  • V = 842.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 293 K

  • 0.44 × 0.40 × 0.24 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.589, Tmax = 0.738

  • 8312 measured reflections

  • 3809 independent reflections

  • 3430 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.09

  • 3809 reflections

  • 262 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O1i 0.86 (2) 1.87 (2) 2.676 (2) 156 (2)
O1W—H1B⋯O4ii 0.86 (2) 1.78 (2) 2.623 (2) 166 (2)
O2W—H2A⋯O5 0.86 (2) 2.42 (3) 3.211 (4) 153 (4)
O2W—H2B⋯O2 0.87 (2) 2.59 (3) 3.353 (4) 146 (4)
O3W—H3A⋯O4iii 0.86 (2) 2.10 (2) 2.891 (3) 153 (4)
O3W—H3B⋯O2 0.87 (2) 1.96 (2) 2.797 (3) 162 (4)
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, we utilized furan-2,5-dicarboxyl acid as the ligand to construct coordination polymers (Li et al., 2012). As an extension of this work, a chainlike compound, [Cu(H2O)(C10H8N2)(C6H2O5)].2H2O (I), is now determined.

The asymmetric unit of (I) is consisted of one Cu(II) cation, one furan-2,5-dicarboxylate anion, one 2,2'-bipyridine and three water molecule The Cu atom is coordinated by two N atoms of 2,2'-bipyridine, one water O atoms and two carboxylate O atoms, exhibiting distorted square pyramid. Adjacent Cu atoms are connected by the furan-2,5-dicarboxylate to form an infinite chain (Fig. 2); Owater—H···O hydrogen bonds hold together ajacent chains to form a layer motif (Fig. 3).

Related literature top

For a related structure, see: Li et al. (2012).

Experimental top

Furan-2,5-dicarboxyl acid (0.0156 g, 0.10 mmol), Cu(NO3)2.6H2O (0.0298 g, 0.10 mmol), 2,2'-bipyridine (0.0156, 0.10 mmol) and NaOH (0.004, 0.10 mmol) were dissolved in water (5 ml, 278 mmol) under stirring. The mixture with molar ratio of 1 (furan-2,5-dicarboxyl acid): 1 (Cu(NO3)2.6H2O): 1 (2,2'-bipyridine): 1 NaOH: 2780 H2O was layed under room temperature for 5 days. Blue blocks were collected as a single phase.

Refinement top

Water H atoms were located in a difference Fourier map and refined with O—H = 0.86 (2) Å and Uiso(H) = 1.2Ueq(O). The carbon H-atoms were placed in calculated positions (C—H (furan and pyridine ring) = 0.93 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: Crystal Structure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The unit cell of (I), showing the atomic labelling scheme and displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) -1 + x, 1 + y, z.]
[Figure 2] Fig. 2. Polyhedral plot of (I), displaying the infinite chain formed by linking the adjacent Cu cations with furan-2,5-dicarboxylate.
[Figure 3] Fig. 3. Ball-stick packing diagram of (I). The adjacent chains are holded together by the Owater–H···O H-bonding interactions to the supermolecular net.
catena-Poly[[[aqua(2,2'-bipyridine-κ2N,N')copper(II)]- µ-furan-2,5-dicarboxylato-κ2O2:O5] dihydrate] top
Crystal data top
[Cu(C6H2O5)(C10H8N2)(H2O)]·2H2OZ = 2
Mr = 427.86F(000) = 438
Triclinic, P1Dx = 1.686 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8621 (18) ÅCell parameters from 2000 reflections
b = 8.9016 (18) Åθ = 3.2–27.5°
c = 12.523 (3) ŵ = 1.35 mm1
α = 88.33 (3)°T = 293 K
β = 69.31 (3)°Block, blue
γ = 66.85 (3)°0.44 × 0.40 × 0.24 mm
V = 842.8 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3809 independent reflections
Radiation source: fine-focus sealed tube3430 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 1111
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1011
Tmin = 0.589, Tmax = 0.738l = 1616
8312 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.2206P]
where P = (Fo2 + 2Fc2)/3
3809 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.38 e Å3
8 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Cu(C6H2O5)(C10H8N2)(H2O)]·2H2Oγ = 66.85 (3)°
Mr = 427.86V = 842.8 (3) Å3
Triclinic, P1Z = 2
a = 8.8621 (18) ÅMo Kα radiation
b = 8.9016 (18) ŵ = 1.35 mm1
c = 12.523 (3) ÅT = 293 K
α = 88.33 (3)°0.44 × 0.40 × 0.24 mm
β = 69.31 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3809 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3430 reflections with I > 2σ(I)
Tmin = 0.589, Tmax = 0.738Rint = 0.022
8312 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0348 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.38 e Å3
3809 reflectionsΔρmin = 0.60 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.11580 (3)1.01038 (3)0.296968 (19)0.02954 (10)
O10.15473 (18)0.80049 (16)0.36822 (12)0.0331 (3)
O20.4389 (2)0.7287 (2)0.26090 (15)0.0451 (4)
O30.53028 (17)0.43934 (16)0.35228 (12)0.0293 (3)
O40.6968 (2)0.0548 (2)0.45196 (17)0.0512 (4)
O50.8433 (2)0.19001 (19)0.33789 (14)0.0428 (4)
N10.1301 (2)0.9088 (2)0.15292 (15)0.0326 (4)
N20.2242 (2)1.1413 (2)0.18474 (14)0.0312 (3)
C10.3191 (3)0.7013 (2)0.33247 (16)0.0288 (4)
C20.3569 (2)0.5458 (2)0.38399 (16)0.0261 (4)
C30.2525 (3)0.4845 (2)0.46097 (19)0.0335 (4)
H30.12990.53390.49560.040*
C40.3660 (3)0.3303 (3)0.4786 (2)0.0366 (4)
H40.33270.25790.52650.044*
C50.5319 (3)0.3088 (2)0.41239 (17)0.0294 (4)
C60.7064 (3)0.1739 (2)0.39860 (18)0.0338 (4)
C70.0776 (3)0.7887 (3)0.1463 (2)0.0421 (5)
H70.02500.75160.21360.050*
C80.0994 (4)0.7183 (3)0.0416 (2)0.0478 (6)
H80.06120.63570.03850.057*
C90.1790 (3)0.7732 (3)0.0579 (2)0.0486 (6)
H90.19790.72570.12920.058*
C100.2306 (3)0.8992 (3)0.05098 (19)0.0416 (5)
H100.28280.93860.11720.050*
C110.2033 (3)0.9656 (2)0.05623 (17)0.0320 (4)
C120.2515 (3)1.1018 (2)0.07481 (17)0.0310 (4)
C130.3209 (3)1.1829 (3)0.01247 (19)0.0409 (5)
H130.33891.15430.08820.049*
C140.3626 (3)1.3065 (3)0.0148 (2)0.0455 (5)
H140.40861.36290.04240.055*
C150.3359 (3)1.3460 (3)0.1276 (2)0.0439 (5)
H150.36481.42840.14720.053*
C160.2659 (3)1.2617 (3)0.2105 (2)0.0398 (5)
H160.24681.28890.28670.048*
O1W0.1177 (2)1.12059 (17)0.43017 (12)0.0325 (3)
H1A0.014 (2)1.164 (3)0.4834 (19)0.039*
H1B0.191 (3)1.056 (3)0.458 (2)0.039*
O2W0.8652 (4)0.5101 (4)0.2205 (3)0.0910 (9)
H2A0.832 (6)0.451 (5)0.272 (3)0.109*
H2B0.767 (4)0.599 (4)0.241 (4)0.109*
O3W0.6105 (5)0.9237 (5)0.2840 (2)0.1073 (12)
H3A0.611 (7)0.952 (6)0.349 (3)0.129*
H3B0.540 (6)0.876 (6)0.291 (4)0.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03370 (15)0.02750 (14)0.02279 (14)0.00666 (10)0.01233 (10)0.00782 (9)
O10.0304 (7)0.0281 (6)0.0285 (7)0.0017 (5)0.0093 (6)0.0085 (5)
O20.0393 (9)0.0437 (9)0.0430 (9)0.0158 (7)0.0071 (7)0.0168 (7)
O30.0238 (6)0.0268 (6)0.0306 (7)0.0038 (5)0.0104 (5)0.0055 (5)
O40.0553 (11)0.0374 (8)0.0717 (12)0.0114 (7)0.0454 (10)0.0227 (8)
O50.0294 (8)0.0399 (8)0.0448 (9)0.0019 (6)0.0154 (7)0.0012 (6)
N10.0358 (9)0.0294 (8)0.0298 (9)0.0069 (7)0.0167 (7)0.0074 (6)
N20.0314 (8)0.0318 (8)0.0245 (8)0.0078 (7)0.0098 (7)0.0066 (6)
C10.0322 (10)0.0252 (8)0.0258 (9)0.0070 (7)0.0127 (8)0.0042 (7)
C20.0230 (8)0.0244 (8)0.0271 (9)0.0037 (6)0.0116 (7)0.0025 (7)
C30.0257 (9)0.0316 (9)0.0396 (11)0.0084 (7)0.0121 (8)0.0099 (8)
C40.0370 (11)0.0322 (10)0.0431 (12)0.0133 (8)0.0192 (9)0.0160 (8)
C50.0314 (10)0.0254 (8)0.0318 (10)0.0063 (7)0.0184 (8)0.0058 (7)
C60.0356 (11)0.0290 (9)0.0349 (11)0.0025 (8)0.0228 (9)0.0001 (7)
C70.0499 (13)0.0355 (11)0.0435 (13)0.0141 (9)0.0246 (11)0.0110 (9)
C80.0538 (14)0.0353 (11)0.0593 (16)0.0112 (10)0.0343 (13)0.0032 (10)
C90.0499 (14)0.0471 (13)0.0412 (13)0.0049 (10)0.0247 (11)0.0062 (10)
C100.0378 (11)0.0467 (12)0.0291 (11)0.0050 (9)0.0134 (9)0.0008 (9)
C110.0265 (9)0.0326 (9)0.0278 (10)0.0014 (7)0.0123 (8)0.0040 (7)
C120.0255 (9)0.0337 (9)0.0246 (9)0.0028 (7)0.0096 (8)0.0056 (7)
C130.0409 (12)0.0465 (12)0.0253 (10)0.0117 (9)0.0086 (9)0.0099 (8)
C140.0428 (13)0.0471 (12)0.0382 (12)0.0167 (10)0.0082 (10)0.0157 (10)
C150.0453 (13)0.0410 (12)0.0443 (13)0.0194 (10)0.0141 (11)0.0111 (9)
C160.0459 (12)0.0402 (11)0.0329 (11)0.0168 (9)0.0154 (10)0.0074 (8)
O1W0.0319 (7)0.0338 (7)0.0247 (7)0.0049 (6)0.0125 (6)0.0064 (5)
O2W0.0754 (18)0.0805 (18)0.091 (2)0.0308 (14)0.0024 (16)0.0061 (15)
O3W0.166 (3)0.179 (3)0.0414 (12)0.140 (3)0.0327 (16)0.0241 (16)
Geometric parameters (Å, º) top
Cu1—O1W1.9681 (15)C7—H70.9300
Cu1—N11.9825 (18)C8—C91.380 (4)
Cu1—O12.0048 (15)C8—H80.9300
Cu1—N22.0218 (18)C9—C101.382 (4)
Cu1—O5i2.1885 (18)C9—H90.9300
O1—C11.286 (2)C10—C111.384 (3)
O2—C11.228 (3)C10—H100.9300
O3—C51.364 (2)C11—C121.483 (3)
O3—C21.364 (2)C12—C131.386 (3)
O4—C61.252 (3)C13—C141.377 (4)
O5—C61.244 (3)C13—H130.9300
N1—C71.338 (3)C14—C151.378 (4)
N1—C111.345 (3)C14—H140.9300
N2—C121.343 (3)C15—C161.376 (3)
N2—C161.343 (3)C15—H150.9300
C1—C21.477 (2)C16—H160.9300
C2—C31.349 (3)O1W—H1A0.861 (15)
C3—C41.413 (3)O1W—H1B0.856 (16)
C3—H30.9300O2W—H2A0.862 (19)
C4—C51.346 (3)O2W—H2B0.872 (19)
C4—H40.9300O3W—H3A0.862 (18)
C5—C61.493 (3)O3W—H3B0.868 (18)
C7—C81.386 (3)
O1W—Cu1—N1174.26 (7)O5—C6—C5118.49 (19)
O1W—Cu1—O191.08 (6)O5—C6—C5118.49 (19)
N1—Cu1—O192.85 (7)O4—C6—C5114.5 (2)
O1W—Cu1—N293.35 (7)N1—C7—C8121.7 (2)
N1—Cu1—N281.09 (7)N1—C7—H7119.1
O1—Cu1—N2147.26 (7)C8—C7—H7119.1
O1W—Cu1—O5i88.22 (7)C9—C8—C7118.8 (2)
N1—Cu1—O5i93.61 (8)C9—C8—H8120.6
O1—Cu1—O5i117.97 (7)C7—C8—H8120.6
N2—Cu1—O5i94.59 (7)C8—C9—C10119.6 (2)
C1—O1—Cu1112.08 (13)C8—C9—H9120.2
C5—O3—C2106.11 (15)C10—C9—H9120.2
C6—O5—Cu1ii126.72 (14)C9—C10—C11118.9 (2)
C7—N1—C11119.63 (18)C9—C10—H10120.6
C7—N1—Cu1124.99 (15)C11—C10—H10120.6
C11—N1—Cu1115.35 (14)N1—C11—C10121.4 (2)
C12—N2—C16119.17 (18)N1—C11—C12114.70 (17)
C12—N2—Cu1114.27 (14)C10—C11—C12123.9 (2)
C16—N2—Cu1126.55 (14)N2—C12—C13121.52 (19)
O2—C1—O1124.51 (18)N2—C12—C11114.49 (18)
O2—C1—O1124.51 (18)C13—C12—C11124.00 (18)
O2—C1—C2120.80 (18)C14—C13—C12118.9 (2)
O2—C1—C2120.80 (18)C14—C13—H13120.6
O1—C1—C2114.69 (17)C12—C13—H13120.6
C3—C2—O3110.33 (16)C13—C14—C15119.6 (2)
C3—C2—C1132.79 (17)C13—C14—H14120.2
O3—C2—C1116.87 (17)C15—C14—H14120.2
C2—C3—C4106.52 (18)C16—C15—C14118.9 (2)
C2—C3—H3126.7C16—C15—H15120.6
C4—C3—H3126.7C14—C15—H15120.6
C5—C4—C3106.56 (19)N2—C16—C15122.0 (2)
C5—C4—H4126.7N2—C16—H16119.0
C3—C4—H4126.7C15—C16—H16119.0
C4—C5—O3110.48 (17)Cu1—O1W—H1A111.7 (16)
C4—C5—C6131.21 (19)Cu1—O1W—H1B112.7 (16)
O3—C5—C6118.28 (18)H1A—O1W—H1B109.8 (19)
O5—C6—O4127.0 (2)H2A—O2W—H2B100 (4)
O5—C6—O4127.0 (2)H3A—O3W—H3B113 (3)
O1W—Cu1—O1—C195.25 (14)Cu1ii—O5—C6—O50 (100)
N1—Cu1—O1—C180.57 (14)O5—O5—C6—O40.00 (8)
N2—Cu1—O1—C12.6 (2)Cu1ii—O5—C6—O42.9 (3)
O5i—Cu1—O1—C1176.19 (12)O5—O5—C6—C50.00 (6)
O1—Cu1—N1—C732.30 (18)Cu1ii—O5—C6—C5177.61 (12)
N2—Cu1—N1—C7179.94 (18)C4—C5—C6—O5174.2 (2)
O5i—Cu1—N1—C785.97 (18)O3—C5—C6—O53.8 (3)
O1—Cu1—N1—C11145.90 (14)C4—C5—C6—O5174.2 (2)
N2—Cu1—N1—C111.74 (14)O3—C5—C6—O53.8 (3)
O5i—Cu1—N1—C1195.83 (15)C4—C5—C6—O45.4 (3)
O1W—Cu1—N2—C12178.94 (14)O3—C5—C6—O4176.59 (17)
N1—Cu1—N2—C120.37 (14)C11—N1—C7—C81.2 (3)
O1—Cu1—N2—C1281.71 (18)Cu1—N1—C7—C8176.89 (17)
O5i—Cu1—N2—C1292.58 (14)N1—C7—C8—C90.6 (4)
O1W—Cu1—N2—C162.47 (18)C7—C8—C9—C101.7 (4)
N1—Cu1—N2—C16178.95 (19)C8—C9—C10—C111.0 (3)
O1—Cu1—N2—C1699.7 (2)C7—N1—C11—C102.0 (3)
O5i—Cu1—N2—C1686.00 (18)Cu1—N1—C11—C10176.33 (15)
O2—O2—C1—O10.00 (8)C7—N1—C11—C12178.33 (18)
O2—O2—C1—C20.00 (14)Cu1—N1—C11—C123.4 (2)
Cu1—O1—C1—O21.8 (3)C9—C10—C11—N10.9 (3)
Cu1—O1—C1—O21.8 (3)C9—C10—C11—C12179.47 (19)
Cu1—O1—C1—C2178.61 (12)C16—N2—C12—C130.3 (3)
C5—O3—C2—C30.3 (2)Cu1—N2—C12—C13178.40 (16)
C5—O3—C2—C1178.50 (15)C16—N2—C12—C11179.10 (17)
O2—C1—C2—C3178.6 (2)Cu1—N2—C12—C112.2 (2)
O2—C1—C2—C3178.6 (2)N1—C11—C12—N23.7 (2)
O1—C1—C2—C31.1 (3)C10—C11—C12—N2176.01 (19)
O2—C1—C2—O32.9 (3)N1—C11—C12—C13176.94 (19)
O2—C1—C2—O32.9 (3)C10—C11—C12—C133.4 (3)
O1—C1—C2—O3177.42 (16)N2—C12—C13—C140.1 (3)
O3—C2—C3—C40.2 (2)C11—C12—C13—C14179.3 (2)
C1—C2—C3—C4178.8 (2)C12—C13—C14—C150.5 (3)
C2—C3—C4—C50.7 (2)C13—C14—C15—C160.8 (4)
C3—C4—C5—O30.9 (2)C12—N2—C16—C150.0 (3)
C3—C4—C5—C6177.18 (19)Cu1—N2—C16—C15178.54 (18)
C2—O3—C5—C40.8 (2)C14—C15—C16—N20.5 (4)
C2—O3—C5—C6177.60 (15)
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O1iii0.86 (2)1.87 (2)2.676 (2)156 (2)
O1W—H1B···O4iv0.86 (2)1.78 (2)2.623 (2)166 (2)
O2W—H2A···O50.86 (2)2.42 (3)3.211 (4)153 (4)
O2W—H2B···O20.87 (2)2.59 (3)3.353 (4)146 (4)
O3W—H3A···O4v0.86 (2)2.10 (2)2.891 (3)153 (4)
O3W—H3B···O20.87 (2)1.96 (2)2.797 (3)162 (4)
Symmetry codes: (iii) x, y+2, z+1; (iv) x+1, y+1, z+1; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C6H2O5)(C10H8N2)(H2O)]·2H2O
Mr427.86
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.8621 (18), 8.9016 (18), 12.523 (3)
α, β, γ (°)88.33 (3), 69.31 (3), 66.85 (3)
V3)842.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.44 × 0.40 × 0.24
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.589, 0.738
No. of measured, independent and
observed [I > 2σ(I)] reflections
8312, 3809, 3430
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.09
No. of reflections3809
No. of parameters262
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.60

Computer programs: PROCESS-AUTO (Rigaku, 1998), Crystal Structure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O1i0.861 (15)1.867 (19)2.676 (2)156 (2)
O1W—H1B···O4ii0.856 (16)1.783 (17)2.623 (2)166 (2)
O2W—H2A···O50.862 (19)2.42 (3)3.211 (4)153 (4)
O2W—H2B···O20.872 (19)2.59 (3)3.353 (4)146 (4)
O3W—H3A···O4iii0.862 (18)2.10 (2)2.891 (3)153 (4)
O3W—H3B···O20.868 (18)1.96 (2)2.797 (3)162 (4)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z.
 

Acknowledgements

This project was sponsored by the Scientific Research Foundation for the Returned Overseas Team, Chinese Education Ministry.

References

First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, Y.-F., Xu, Y., Qin, X.-L., Yuan, Y.-P. & Gao, W.-Y. (2012). Acta Cryst. E68, m1140.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds