organic compounds
DL-Tyrosinium chloride dihydrate
aUnité de Recherche Chimie de l'Environnement et Moleculaire Structurale, (CHEMS), Faculté des Sciences Exactes, Campus Chaabet Ersas, Université Mentouri de Constantine, 25000 Constantine, Algeria, and bCristallographie, Résonance Magnétique et Modélisation (CRM2), Université Henri Poincaré, Nancy 1, Faculté des Sciences, BP 70239, 54506 Vandoeuvre lès Nancy CEDEX, France
*Correspondence e-mail: Lamiabendjeddou@yahoo.fr
In the title compound, C9H12NO3+·Cl−·2H2O, the cation has a protonated amino group resulting from proton transfer from chloridric acid. The structure displays double layers parallel to the [010] direction held together by N—H⋯O, N—H⋯Cl, O—H⋯O and O—H⋯Cl hydrogen bonds. These layers are stacked along the c axis at b = 1/2; within each layer, the tyrosinium cations are arranged in an alternating head-to-tail sequence, forming inversion dimers [R22(10) motif]. The water molecules allow for the construction of a three-dimensional hydrogen-bonded network formed by centrosymmetric R66(28) and R88(34) motifs.
Related literature
For other examples of organic salts of amino acids, see: Zeghouan et al. (2012); Guenifa et al. (2009). For the structure of bis(L-tyrosinium) sulfate monohydrate, see: Sridhar et al. (2002). For other examples of amino acids with non-polar side chains, see: Torii & Iitaka (1973); Harding & Long (1968). For graph-set notation, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004)'.
Supporting information
10.1107/S1600536812043899/nk2187sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812043899/nk2187Isup2.hkl
The compound was obtained as colourless crystals with melting points of 370°, after few days, by slow evaporation from an aqueous solution of tyrosine and chloridric acid in stoechiometric ratio of 1:1.
The methine, methylene, and aromatic H atoms were placed at calculated positions respectively with C—H fixed at 0.98 Å (AFIX 13), 0.97 Å (AFIX 23), and C—H = 0.93 Å (Afix 43). All H atom attached to N or O were initially located by difference maps with restraint of the N—H bond length to 0.90 (2) Å (DFIX), and U fixed to be 1.2 times that of the N1; and O—H bond length to 0.85 (2) Å (DFIX) for hydroxyl group and 0.85 (1) Å (DFIX) for water molecule with H···H = 1.39 (2) and U fixed to be 1.5 times that of the o1, O2, o1w and o2w.
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004)'.Fig. 1. The asymmetric unit of (I) (Fig.1), showing the crystallographic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. | |
Fig. 2. Part of the crystal structures, showing the formation of dimers via N—H···O hydrogen bonds, and the aggregation of R22(10), R24(8) and R35(13) motifs [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1, y, z]. For the sake of clarity, the water molecules in (I), and H atoms not involved in hydrogen bonding have been omitted. Only atoms involved in hydrogen bonding are labelled. | |
Fig. 3. Packing view of (I) showing the aggregation of R24(8), R66(28) and R88(34) hydrogen-bonding motifs. [Symmetry codes:(i) -x + 1, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 2]. For the sake of clarity, the chloride anions, and H atoms not involved in hydrogen bonding have been omitted. Only atoms involved in hydrogen bonding are labelled. |
C9H12NO3+·Cl−·2H2O | Z = 2 |
Mr = 253.68 | F(000) = 268 |
Triclinic, P1 | Dx = 1.43 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.3330 (2) Å | Cell parameters from 12044 reflections |
b = 10.9634 (5) Å | θ = 3.4–30.0° |
c = 11.2500 (4) Å | µ = 0.33 mm−1 |
α = 113.642 (4)° | T = 100 K |
β = 94.359 (3)° | Needle, colourless |
γ = 98.465 (3)° | 0.3 × 0.03 × 0.02 mm |
V = 589.34 (5) Å3 |
Oxford Diffraction Xcalibur Sapphire CCD diffractometer | 2780 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.034 |
Graphite monochromator | θmax = 30.0°, θmin = 3.4° |
ω scans | h = −7→7 |
12044 measured reflections | k = −15→15 |
3445 independent reflections | l = −15→15 |
Refinement on F2 | 11 restraints |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.0483P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.084 | (Δ/σ)max < 0.001 |
S = 1.02 | Δρmax = 0.43 e Å−3 |
3445 reflections | Δρmin = −0.30 e Å−3 |
172 parameters |
C9H12NO3+·Cl−·2H2O | γ = 98.465 (3)° |
Mr = 253.68 | V = 589.34 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.3330 (2) Å | Mo Kα radiation |
b = 10.9634 (5) Å | µ = 0.33 mm−1 |
c = 11.2500 (4) Å | T = 100 K |
α = 113.642 (4)° | 0.3 × 0.03 × 0.02 mm |
β = 94.359 (3)° |
Oxford Diffraction Xcalibur Sapphire CCD diffractometer | 2780 reflections with I > 2σ(I) |
12044 measured reflections | Rint = 0.034 |
3445 independent reflections |
R[F2 > 2σ(F2)] = 0.032 | 11 restraints |
wR(F2) = 0.084 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.43 e Å−3 |
3445 reflections | Δρmin = −0.30 e Å−3 |
172 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.26233 (5) | 0.45517 (3) | 0.68584 (3) | 0.01279 (8) | |
O2 | 0.63481 (17) | 0.90937 (9) | 0.68369 (9) | 0.0169 (2) | |
O1 | 0.43456 (17) | 0.69839 (9) | 1.18096 (9) | 0.0162 (2) | |
O1W | 0.07015 (18) | 0.82478 (9) | 0.34641 (9) | 0.0165 (2) | |
H12W | −0.008 (3) | 0.7497 (11) | 0.3437 (15) | 0.025* | |
H11W | 0.177 (2) | 0.8037 (15) | 0.2947 (14) | 0.025* | |
O3 | 0.40595 (16) | 0.69671 (9) | 0.58151 (9) | 0.01381 (19) | |
O2W | 0.7642 (2) | 0.02475 (10) | 0.39042 (10) | 0.0255 (2) | |
H22W | 0.832 (3) | −0.0447 (13) | 0.3609 (15) | 0.038* | |
H21W | 0.807 (3) | 0.0653 (16) | 0.4715 (9) | 0.038* | |
N1 | 0.7923 (2) | 0.58230 (10) | 0.62048 (11) | 0.0113 (2) | |
C5 | 0.8819 (2) | 0.66936 (12) | 0.94214 (12) | 0.0130 (2) | |
H5 | 1.0026 | 0.6179 | 0.9052 | 0.016* | |
C6 | 0.7489 (2) | 0.64160 (12) | 1.03283 (12) | 0.0135 (2) | |
H6 | 0.7796 | 0.572 | 1.0558 | 0.016* | |
C1 | 0.6041 (2) | 0.77693 (12) | 0.63928 (12) | 0.0107 (2) | |
C7 | 0.5693 (2) | 0.71907 (12) | 1.08898 (12) | 0.0116 (2) | |
C3 | 0.9865 (2) | 0.80241 (12) | 0.80762 (12) | 0.0121 (2) | |
H3A | 1.1505 | 0.7748 | 0.8117 | 0.015* | |
H3B | 1.0206 | 0.8997 | 0.8337 | 0.015* | |
C9 | 0.6553 (2) | 0.84770 (12) | 0.96215 (12) | 0.0122 (2) | |
H9 | 0.6224 | 0.9165 | 0.9384 | 0.015* | |
C2 | 0.8520 (2) | 0.73226 (12) | 0.66507 (12) | 0.0108 (2) | |
H2A | 0.9708 | 0.7523 | 0.6101 | 0.013* | |
C8 | 0.5211 (2) | 0.82194 (12) | 1.05327 (12) | 0.0128 (2) | |
H8 | 0.3999 | 0.8731 | 1.0901 | 0.015* | |
C4 | 0.8385 (2) | 0.77273 (12) | 0.90528 (11) | 0.0109 (2) | |
H3N | 0.925 (2) | 0.5502 (14) | 0.6426 (14) | 0.013* | |
H2N | 0.758 (3) | 0.5428 (14) | 0.5303 (12) | 0.013* | |
H1N | 0.657 (2) | 0.5615 (14) | 0.6569 (13) | 0.013* | |
H1 | 0.500 (3) | 0.6478 (14) | 1.2082 (15) | 0.016* | |
H2 | 0.494 (2) | 0.9367 (14) | 0.6636 (14) | 0.016* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.01191 (14) | 0.01584 (14) | 0.01394 (15) | 0.00480 (11) | 0.00313 (10) | 0.00869 (11) |
O2 | 0.0146 (4) | 0.0119 (4) | 0.0229 (5) | 0.0042 (4) | −0.0028 (4) | 0.0065 (4) |
O1 | 0.0190 (5) | 0.0204 (5) | 0.0170 (5) | 0.0102 (4) | 0.0075 (4) | 0.0128 (4) |
O1W | 0.0177 (5) | 0.0145 (4) | 0.0176 (5) | 0.0041 (4) | 0.0055 (4) | 0.0061 (4) |
O3 | 0.0111 (4) | 0.0137 (4) | 0.0161 (5) | 0.0032 (3) | 0.0010 (3) | 0.0055 (4) |
O2W | 0.0305 (6) | 0.0247 (5) | 0.0180 (5) | 0.0184 (5) | −0.0029 (4) | 0.0022 (4) |
N1 | 0.0103 (5) | 0.0130 (5) | 0.0108 (5) | 0.0045 (4) | 0.0012 (4) | 0.0045 (4) |
C5 | 0.0127 (5) | 0.0140 (6) | 0.0121 (6) | 0.0066 (5) | 0.0013 (4) | 0.0041 (5) |
C6 | 0.0161 (6) | 0.0136 (6) | 0.0128 (6) | 0.0066 (5) | 0.0014 (5) | 0.0064 (5) |
C1 | 0.0127 (5) | 0.0131 (5) | 0.0084 (6) | 0.0045 (5) | 0.0031 (4) | 0.0056 (4) |
C7 | 0.0113 (5) | 0.0134 (5) | 0.0091 (6) | 0.0018 (4) | 0.0006 (4) | 0.0043 (4) |
C3 | 0.0105 (5) | 0.0136 (6) | 0.0115 (6) | 0.0020 (5) | −0.0004 (4) | 0.0050 (5) |
C9 | 0.0140 (6) | 0.0106 (5) | 0.0126 (6) | 0.0037 (5) | 0.0001 (5) | 0.0053 (5) |
C2 | 0.0103 (5) | 0.0120 (5) | 0.0113 (6) | 0.0026 (4) | 0.0016 (4) | 0.0058 (5) |
C8 | 0.0133 (6) | 0.0122 (5) | 0.0131 (6) | 0.0059 (5) | 0.0024 (5) | 0.0041 (5) |
C4 | 0.0095 (5) | 0.0115 (5) | 0.0087 (6) | 0.0002 (4) | −0.0021 (4) | 0.0025 (4) |
O1—C7 | 1.3754 (16) | C3—C4 | 1.5096 (17) |
O2—C1 | 1.3117 (17) | C4—C9 | 1.3961 (16) |
O3—C1 | 1.2150 (15) | C4—C5 | 1.3962 (19) |
O1—H1 | 0.837 (17) | C5—C6 | 1.3900 (18) |
O2—H2 | 0.894 (12) | C6—C7 | 1.3925 (17) |
O1W—H11W | 0.835 (12) | C7—C8 | 1.390 (2) |
O1W—H12W | 0.854 (14) | C8—C9 | 1.3882 (18) |
O2W—H21W | 0.834 (9) | C2—H2A | 0.9800 |
O2W—H22W | 0.847 (16) | C3—H3A | 0.9700 |
N1—C2 | 1.4887 (18) | C3—H3B | 0.9700 |
N1—H2N | 0.920 (12) | C5—H5 | 0.9300 |
N1—H1N | 0.901 (13) | C6—H6 | 0.9300 |
N1—H3N | 0.896 (13) | C8—H8 | 0.9300 |
C1—C2 | 1.5225 (16) | C9—H9 | 0.9300 |
C2—C3 | 1.5334 (17) | ||
C7—O1—H1 | 109.9 (11) | O1—C7—C8 | 117.48 (10) |
C1—O2—H2 | 112.8 (10) | C6—C7—C8 | 120.27 (11) |
H11W—O1W—H12W | 105.2 (16) | O1—C7—C6 | 122.25 (12) |
H21W—O2W—H22W | 109.8 (16) | C7—C8—C9 | 119.46 (11) |
H1N—N1—H2N | 111.9 (13) | C4—C9—C8 | 121.56 (13) |
C2—N1—H2N | 108.2 (10) | N1—C2—H2A | 108.00 |
C2—N1—H3N | 112.5 (10) | C3—C2—H2A | 108.00 |
H1N—N1—H3N | 109.5 (13) | C1—C2—H2A | 108.00 |
C2—N1—H1N | 108.3 (10) | C2—C3—H3B | 109.00 |
H2N—N1—H3N | 106.6 (14) | C4—C3—H3A | 109.00 |
O2—C1—O3 | 125.48 (11) | H3A—C3—H3B | 108.00 |
O2—C1—C2 | 111.91 (10) | C4—C3—H3B | 109.00 |
O3—C1—C2 | 122.60 (12) | C2—C3—H3A | 109.00 |
N1—C2—C3 | 110.77 (11) | C4—C5—H5 | 119.00 |
C1—C2—C3 | 115.02 (10) | C6—C5—H5 | 119.00 |
N1—C2—C1 | 107.62 (10) | C7—C6—H6 | 120.00 |
C2—C3—C4 | 114.94 (10) | C5—C6—H6 | 120.00 |
C3—C4—C9 | 121.35 (12) | C7—C8—H8 | 120.00 |
C3—C4—C5 | 120.83 (10) | C9—C8—H8 | 120.00 |
C5—C4—C9 | 117.82 (11) | C8—C9—H9 | 119.00 |
C4—C5—C6 | 121.52 (11) | C4—C9—H9 | 119.00 |
C5—C6—C7 | 119.36 (13) | ||
O2—C1—C2—N1 | 175.77 (10) | C9—C4—C5—C6 | −0.28 (18) |
O2—C1—C2—C3 | 51.79 (15) | C3—C4—C9—C8 | −179.15 (11) |
O3—C1—C2—N1 | −5.77 (16) | C5—C4—C9—C8 | 0.53 (18) |
O3—C1—C2—C3 | −129.75 (13) | C4—C5—C6—C7 | −0.41 (18) |
N1—C2—C3—C4 | −57.63 (13) | C5—C6—C7—O1 | −178.84 (11) |
C1—C2—C3—C4 | 64.66 (16) | C5—C6—C7—C8 | 0.88 (18) |
C2—C3—C4—C5 | 94.83 (14) | O1—C7—C8—C9 | 179.09 (11) |
C2—C3—C4—C9 | −85.50 (15) | C6—C7—C8—C9 | −0.64 (18) |
C3—C4—C5—C6 | 179.40 (11) | C7—C8—C9—C4 | −0.07 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···Cl1 | 0.90 (1) | 2.36 (1) | 3.2326 (12) | 162 (1) |
N1—H2N···Cl1i | 0.92 (1) | 2.44 (1) | 3.2872 (12) | 154 (1) |
N1—H2N···O3i | 0.92 (1) | 2.40 (2) | 2.9574 (15) | 119 (1) |
N1—H3N···Cl1ii | 0.90 (1) | 2.32 (1) | 3.2151 (12) | 176 (1) |
O1—H1···Cl1iii | 0.84 (2) | 2.36 (2) | 3.1858 (11) | 169 (1) |
O2—H2···O2Wi | 0.89 (1) | 1.64 (1) | 2.5319 (15) | 174 (2) |
O1W—H11W···O1iv | 0.84 (1) | 2.10 (1) | 2.9044 (13) | 162 (2) |
O1W—H12W···Cl1v | 0.85 (1) | 2.33 (1) | 3.1784 (11) | 172 (2) |
O2W—H21W···O1Wi | 0.83 (1) | 1.91 (1) | 2.7429 (14) | 173 (2) |
O2W—H22W···O1Wvi | 0.85 (2) | 2.02 (2) | 2.8318 (15) | 161 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+2; (iv) x, y, z−1; (v) −x, −y+1, −z+1; (vi) x+1, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C9H12NO3+·Cl−·2H2O |
Mr | 253.68 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 5.3330 (2), 10.9634 (5), 11.2500 (4) |
α, β, γ (°) | 113.642 (4), 94.359 (3), 98.465 (3) |
V (Å3) | 589.34 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.33 |
Crystal size (mm) | 0.3 × 0.03 × 0.02 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12044, 3445, 2780 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.704 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.084, 1.02 |
No. of reflections | 3445 |
No. of parameters | 172 |
No. of restraints | 11 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.43, −0.30 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004)'.
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···Cl1 | 0.901 (13) | 2.363 (13) | 3.2326 (12) | 162.3 (12) |
N1—H2N···Cl1i | 0.920 (12) | 2.435 (13) | 3.2872 (12) | 154.1 (14) |
N1—H2N···O3i | 0.920 (12) | 2.398 (15) | 2.9574 (15) | 119.2 (12) |
N1—H3N···Cl1ii | 0.896 (13) | 2.320 (13) | 3.2151 (12) | 176.1 (14) |
O1—H1···Cl1iii | 0.837 (17) | 2.361 (16) | 3.1858 (11) | 168.8 (14) |
O2—H2···O2Wi | 0.894 (12) | 1.641 (13) | 2.5319 (15) | 173.6 (15) |
O1W—H11W···O1iv | 0.835 (12) | 2.099 (13) | 2.9044 (13) | 161.8 (16) |
O1W—H12W···Cl1v | 0.854 (14) | 2.330 (14) | 3.1784 (11) | 172.2 (15) |
O2W—H21W···O1Wi | 0.834 (9) | 1.914 (10) | 2.7429 (14) | 173.1 (16) |
O2W—H22W···O1Wvi | 0.847 (16) | 2.017 (16) | 2.8318 (15) | 161.3 (15) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+2; (iv) x, y, z−1; (v) −x, −y+1, −z+1; (vi) x+1, y−1, z. |
Acknowledgements
Technical support (X-ray measurements at SCDRX) from Université Henry Poincaré, Nancy 1, is gratefully acknowledged.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Guenifa, F., Bendjeddou, L., Cherouana, A., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o2264–o2265. Web of Science CSD CrossRef IUCr Journals Google Scholar
Harding, M. M. & Long, H. A. (1968). Acta Cryst. B24, 1096–1102. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Oxford Diffraction. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland. Google Scholar
Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/ . Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sridhar, B., Srinivasan, N. & Rajaram, R. K. (2002). Acta Cryst. E58, o211–o214. Web of Science CSD CrossRef IUCr Journals Google Scholar
Torii, K. & Iitaka, Y. (1973). Acta Cryst. B29, 2799–2807. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Zeghouan, O., Bendjeddou, L., Cherouana, A., Dahaoui, S. & Lecomte, C. (2012). Acta Cryst. E68, o2959–o2960. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
We report the crystal structure of DL-tyrosinium chloride dihydrate (I), as part of our research with organic salts of amino acids (Zeghouan et al., 2012; Guenifa et al., 2009).
The asymmetric unit of (I) contains a tyrosinium cation, chloride anion and two water molecules (Fig.1). As expected, tyrosine form protonated units in (I) with the transfer of an H atom from chloridric acid. A similar situation is observed in bis(L-tyrosinium) sulfate monohydrate, (Sridhar et al., 2002).
In the crystal structure of (I), the ions are connected into a three-dimensional hydrogen-bonded network via N—H···O, N—H···Cl, O—H···O and O—H···Cl hydrogen bonds (Table 1). The tyrosinium cations are held together by N—H···O hydrogen bonds, forming a centrosymmetric dimer (R22(10) motif; Bernstein et al., 1995) centred at (1/2, 1/2, 1/2). This centrosymmetric dimer is further connected along [100] direction to either side of the chloride anions by N—H···Cl hydrogen bonds [R24(8) and R35(13) motifs] (Fig. 2). The aggregation of the rings motifs results in an overall two-dimensional hydrogen-bonded network.
The water molecules, which plays a dual role as both donor and acceptor in hydrogen bonding interactions, generating the centrosymmetric hydrogen-bonded (R24(8) motif) via O2w—H21w···O1w(i) and O2w—H22w···O1w(vi) (Fig. 3), and are involved in two centred hydrogen bonding with the cations to produce a centrosymmetric R66(28) and R88(34) motifs, thus completing the three-dimensional hydrogen-bonded network. The structures of many amino acids with non-polar side chains have the arrangement of a double layers of carboxyl and amino groups held together by hydrogen bonds (Torii & Iitaka, 1973; Harding & Long, 1968).
The molecule packing of (I), consists of double layers stacked along the c axis, at b = 1/2, where in each layer the tyrosinium cations are arranged with alternating head-to-tail sequence.