organic compounds
4-(2-Chlorophenylamino)-pent-3-en-2-one
aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
*Correspondence e-mail: ventergjs@ufs.ac.za
In the title compound, C11H12ClNO, intramolecular N—H⋯O hydrogen bonding is present. The dihedral angle between the benzene ring and the pentenone unit is 46.52 (5)°. In the crystal, C—H⋯O interactions between hydrogen atoms of the aryl moiety and two separate oxygen atoms occur, leading to a three-dimensional network.
Related literature
For synthetic background and similar compounds, see: Shaheen et al. (2006); Venter et al. (2010, 2012b). For applications, see: Brink et al. (2010); Pyżuk et al. (1993); Roodt & Steyn (2000); Tan et al. (2008); Xia et al. (2008). For related ligand systems, see: Damoense et al. (1994), Venter et al. (2012a).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812042043/pk2444sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812042043/pk2444Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812042043/pk2444Isup3.cml
A solution of acetylacetone (11.07 g, 0.1106 mol), 2-chloro-aniline (10.73 g, 0.1008 mol) and 2 drops of H2SO4 (conc.) in 150 ml benzene was refluxed for 6 h in a Dean-Stark trap, filtered and left to crystallize. Crystals suitable for X-ray diffraction were obtained in 17.86 g (94.32%) yield. This compound is stable in air and light over a period of several months.
The methyl and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 Å and 0.98 Å and Uiso(H) = 1.5Ueq(C) and 1.2Ueq(C), respectively. The methyl groups were generated to fit the difference electron density and the groups were then refined as rigid rotors.
Data collection: APEX2 (Bruker, 2005); cell
SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).C11H12ClNO | F(000) = 440 |
Mr = 209.67 | Dx = 1.347 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 5717 reflections |
a = 7.3264 (3) Å | θ = 2.7–28.3° |
b = 8.7103 (4) Å | µ = 0.33 mm−1 |
c = 16.1960 (7) Å | T = 100 K |
V = 1033.55 (8) Å3 | Cuboid, yellow |
Z = 4 | 0.6 × 0.42 × 0.21 mm |
Bruker APEXII CCD area-detector diffractometer | 2259 independent reflections |
Radiation source: fine-focus sealed tube | 2211 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ϕ and ω scans | θmax = 27.0°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −9→9 |
Tmin = 0.825, Tmax = 0.933 | k = −11→11 |
17399 measured reflections | l = −20→19 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.025 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.068 | w = 1/[σ2(Fo2) + (0.0376P)2 + 0.2837P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.013 |
2259 reflections | Δρmax = 0.21 e Å−3 |
126 parameters | Δρmin = −0.24 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 932 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.01 (5) |
C11H12ClNO | V = 1033.55 (8) Å3 |
Mr = 209.67 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.3264 (3) Å | µ = 0.33 mm−1 |
b = 8.7103 (4) Å | T = 100 K |
c = 16.1960 (7) Å | 0.6 × 0.42 × 0.21 mm |
Bruker APEXII CCD area-detector diffractometer | 2259 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2211 reflections with I > 2σ(I) |
Tmin = 0.825, Tmax = 0.933 | Rint = 0.032 |
17399 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.068 | Δρmax = 0.21 e Å−3 |
S = 1.06 | Δρmin = −0.24 e Å−3 |
2259 reflections | Absolute structure: Flack (1983), 932 Friedel pairs |
126 parameters | Absolute structure parameter: 0.01 (5) |
0 restraints |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl12 | 0.00235 (5) | 0.20519 (4) | 0.531562 (19) | 0.02339 (10) | |
N11 | 0.21805 (15) | 0.28866 (14) | 0.67897 (7) | 0.0174 (2) | |
H11 | 0.2500 (8) | 0.209 (2) | 0.6556 (6) | 0.027 (5)* | |
O12 | 0.33003 (14) | 0.00171 (12) | 0.68371 (6) | 0.02136 (18) | |
C3 | 0.24678 (18) | 0.14426 (16) | 0.80149 (9) | 0.0178 (3) | |
H3 | 0.2362 | 0.1411 | 0.8599 | 0.021* | |
C2 | 0.20915 (17) | 0.28095 (16) | 0.76209 (8) | 0.0169 (3) | |
C111 | 0.18055 (18) | 0.41335 (16) | 0.62662 (8) | 0.0166 (3) | |
C116 | 0.2464 (2) | 0.56091 (16) | 0.64159 (9) | 0.0197 (3) | |
H116 | 0.3191 | 0.5797 | 0.6891 | 0.024* | |
C4 | 0.3006 (2) | 0.00740 (18) | 0.75983 (9) | 0.02136 (18) | |
C113 | 0.04201 (19) | 0.50725 (19) | 0.49974 (9) | 0.0229 (3) | |
H113 | −0.0264 | 0.4881 | 0.451 | 0.027* | |
C5 | 0.3168 (2) | −0.13853 (17) | 0.80936 (9) | 0.0227 (3) | |
H5A | 0.2032 | −0.1974 | 0.8047 | 0.034* | |
H5B | 0.339 | −0.1131 | 0.8674 | 0.034* | |
H5C | 0.4185 | −0.2 | 0.7881 | 0.034* | |
C112 | 0.08035 (18) | 0.38927 (17) | 0.55421 (9) | 0.0184 (3) | |
C115 | 0.20717 (19) | 0.68074 (17) | 0.58791 (9) | 0.0226 (3) | |
H115 | 0.2505 | 0.7812 | 0.5996 | 0.027* | |
C1 | 0.1554 (2) | 0.41966 (16) | 0.81135 (9) | 0.0203 (3) | |
H1A | 0.2628 | 0.4845 | 0.8205 | 0.03* | |
H1B | 0.1056 | 0.3871 | 0.8647 | 0.03* | |
H1C | 0.0627 | 0.478 | 0.7811 | 0.03* | |
C114 | 0.1048 (2) | 0.65395 (18) | 0.51727 (9) | 0.0243 (3) | |
H114 | 0.0776 | 0.7363 | 0.4808 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl12 | 0.02513 (17) | 0.02720 (17) | 0.01784 (17) | −0.00589 (15) | −0.00152 (14) | −0.00549 (12) |
N11 | 0.0194 (5) | 0.0181 (5) | 0.0146 (5) | 0.0016 (5) | −0.0004 (4) | −0.0024 (5) |
O12 | 0.0232 (4) | 0.0229 (4) | 0.0180 (4) | −0.0007 (3) | 0.0032 (3) | −0.0004 (3) |
C3 | 0.0158 (6) | 0.0234 (7) | 0.0140 (7) | −0.0011 (5) | −0.0006 (5) | −0.0012 (5) |
C2 | 0.0122 (6) | 0.0218 (6) | 0.0167 (6) | −0.0010 (5) | −0.0007 (5) | −0.0026 (5) |
C111 | 0.0136 (6) | 0.0216 (6) | 0.0145 (6) | 0.0013 (5) | 0.0015 (5) | −0.0012 (5) |
C116 | 0.0168 (6) | 0.0224 (6) | 0.0198 (7) | −0.0008 (5) | 0.0010 (5) | −0.0028 (5) |
C4 | 0.0232 (4) | 0.0229 (4) | 0.0180 (4) | −0.0007 (3) | 0.0032 (3) | −0.0004 (3) |
C113 | 0.0202 (7) | 0.0333 (7) | 0.0152 (6) | 0.0025 (6) | 0.0003 (5) | 0.0019 (6) |
C5 | 0.0211 (6) | 0.0230 (7) | 0.0241 (8) | 0.0020 (6) | 0.0011 (6) | 0.0025 (6) |
C112 | 0.0151 (6) | 0.0236 (7) | 0.0165 (7) | −0.0019 (5) | 0.0026 (5) | −0.0027 (5) |
C115 | 0.0212 (7) | 0.0224 (7) | 0.0242 (7) | −0.0013 (6) | 0.0062 (5) | 0.0008 (6) |
C1 | 0.0212 (6) | 0.0221 (7) | 0.0175 (7) | 0.0018 (5) | 0.0007 (5) | −0.0032 (5) |
C114 | 0.0228 (7) | 0.0276 (7) | 0.0224 (8) | 0.0032 (6) | 0.0042 (6) | 0.0077 (6) |
Cl12—C112 | 1.7412 (15) | C4—C5 | 1.508 (2) |
N11—C2 | 1.3494 (18) | C113—C112 | 1.383 (2) |
N11—C111 | 1.4049 (18) | C113—C114 | 1.387 (2) |
N11—H11 | 0.8243 | C113—H113 | 0.95 |
O12—C4 | 1.2524 (18) | C5—H5A | 0.98 |
C3—C2 | 1.3787 (19) | C5—H5B | 0.98 |
C3—C4 | 1.425 (2) | C5—H5C | 0.98 |
C3—H3 | 0.95 | C115—C114 | 1.388 (2) |
C2—C1 | 1.5005 (19) | C115—H115 | 0.95 |
C111—C116 | 1.3942 (19) | C1—H1A | 0.98 |
C111—C112 | 1.3994 (19) | C1—H1B | 0.98 |
C116—C115 | 1.389 (2) | C1—H1C | 0.98 |
C116—H116 | 0.95 | C114—H114 | 0.95 |
C2—N11—C111 | 129.12 (13) | C4—C5—H5A | 109.5 |
C2—N11—H11 | 115.4 | C4—C5—H5B | 109.5 |
C111—N11—H11 | 115.4 | H5A—C5—H5B | 109.5 |
C2—C3—C4 | 123.95 (13) | C4—C5—H5C | 109.5 |
C2—C3—H3 | 118 | H5A—C5—H5C | 109.5 |
C4—C3—H3 | 118 | H5B—C5—H5C | 109.5 |
N11—C2—C3 | 119.67 (12) | C113—C112—C111 | 121.98 (13) |
N11—C2—C1 | 120.21 (13) | C113—C112—Cl12 | 118.89 (11) |
C3—C2—C1 | 120.11 (12) | C111—C112—Cl12 | 119.13 (11) |
C116—C111—C112 | 117.74 (13) | C114—C115—C116 | 120.12 (13) |
C116—C111—N11 | 122.69 (12) | C114—C115—H115 | 119.9 |
C112—C111—N11 | 119.50 (12) | C116—C115—H115 | 119.9 |
C115—C116—C111 | 120.82 (13) | C2—C1—H1A | 109.5 |
C115—C116—H116 | 119.6 | C2—C1—H1B | 109.5 |
C111—C116—H116 | 119.6 | H1A—C1—H1B | 109.5 |
O12—C4—C3 | 123.13 (14) | C2—C1—H1C | 109.5 |
O12—C4—C5 | 118.48 (14) | H1A—C1—H1C | 109.5 |
C3—C4—C5 | 118.35 (13) | H1B—C1—H1C | 109.5 |
C112—C113—C114 | 119.11 (14) | C113—C114—C115 | 120.18 (14) |
C112—C113—H113 | 120.4 | C113—C114—H114 | 119.9 |
C114—C113—H113 | 120.4 | C115—C114—H114 | 119.9 |
C111—N11—C2—C3 | 177.99 (12) | C114—C113—C112—C111 | 0.1 (2) |
C111—N11—C2—C1 | −0.9 (2) | C114—C113—C112—Cl12 | −179.63 (11) |
C4—C3—C2—N11 | 1.8 (2) | C116—C111—C112—C113 | −1.8 (2) |
C4—C3—C2—C1 | −179.31 (13) | N11—C111—C112—C113 | −178.91 (12) |
C2—N11—C111—C116 | 46.2 (2) | C116—C111—C112—Cl12 | 177.84 (10) |
C2—N11—C111—C112 | −136.84 (15) | N11—C111—C112—Cl12 | 0.77 (17) |
C112—C111—C116—C115 | 2.6 (2) | C111—C116—C115—C114 | −1.5 (2) |
N11—C111—C116—C115 | 179.53 (13) | C112—C113—C114—C115 | 1.1 (2) |
C2—C3—C4—O12 | 4.7 (2) | C116—C115—C114—C113 | −0.3 (2) |
C2—C3—C4—C5 | −173.14 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11···O12 | 0.82 | 1.95 | 2.6317 (16) | 139 |
C113—H113···O12i | 0.95 | 2.42 | 3.3536 (18) | 166 |
C115—H115···O12ii | 0.95 | 2.43 | 3.3217 (18) | 157 |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C11H12ClNO |
Mr | 209.67 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 7.3264 (3), 8.7103 (4), 16.1960 (7) |
V (Å3) | 1033.55 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.33 |
Crystal size (mm) | 0.6 × 0.42 × 0.21 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.825, 0.933 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17399, 2259, 2211 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.068, 1.06 |
No. of reflections | 2259 |
No. of parameters | 126 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.21, −0.24 |
Absolute structure | Flack (1983), 932 Friedel pairs |
Absolute structure parameter | 0.01 (5) |
Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11···O12 | 0.82 | 1.95 | 2.6317 (16) | 139.2 |
C113—H113···O12i | 0.95 | 2.42 | 3.3536 (18) | 166.1 |
C115—H115···O12ii | 0.95 | 2.43 | 3.3217 (18) | 157.1 |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) x, y+1, z. |
Acknowledgements
Financial assistance from the University of the Free State is gratefully acknowledged. We also express our gratitude towards SASOL, the South African National Research Foundation (SA-NRF/THRIP) and the Inkaba yeAfrica initiative for financial support of this project. Part of this material is based on work supported by the SA-NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA-NRF.
References
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. 39, 5572–5578. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Damoense, L. J., Purcell, W., Roodt, A. & Leipoldt, J. G. (1994). Rhodium Express, 5, 10–13. CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Pyżuk, W., Krówczynsk, A. & Górecka, E. (1993). Mol. Cryst. Liq. Cryst. 237, 75–84. Google Scholar
Roodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry. Vol. 2, pp. 1–23. Trivandrum: Transworld Research Network. Google Scholar
Shaheen, F., Marchio, L., Badshah, A. & Khosa, M. K. (2006). Acta Cryst. E62, o873–o874. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tan, H. Y., Loke, W. K., Tan, Y. T. & Nguyen, N.-T. (2008). Lab Chip, 8, 885–891. CrossRef PubMed CAS Google Scholar
Venter, G. J. S., Steyl, G. & Roodt, A. (2010). Acta Cryst. E66, o3011–o3012. Web of Science CSD CrossRef IUCr Journals Google Scholar
Venter, G. J. S., Steyl, G. & Roodt, A. (2012a). Acta Cryst. E68, m666–m667. CSD CrossRef IUCr Journals Google Scholar
Venter, G. J. S., Steyl, G. & Roodt, A. (2012b). Acta Cryst. E68, o2930–o2931. CSD CrossRef IUCr Journals Google Scholar
Xia, M., Wu, B. & Xiang, G. (2008). J. Fluor. Chem. 129, 402–408. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The β-diketone compound AcacH (acetylacetone; or when coordinated acetylacetonato, acac-) has been studied extensively, with a multitude of derivatives synthesized to date. One such derivative type, known as enaminoketones, contains both nitrogen and oxygen atoms with an unsaturated C═C bond, and is of interest in various fields including liquid crystals [Pyżuk et al. (1993)], fluorescence studies [Xia et al. (2008)], medicine [Tan et al. (2008)] and catalysis [Roodt & Steyn (2000); Brink et al. (2010)].
The title compound (Fig. 1) crystallizes in the orthorhombic space group P212121 with Z = 4. This enaminoketone is a derivative of 4-(phenylamino)pent-3-en-2-one [PhonyH; Shaheen et al. (2006)]. Bond distances differ significantly from compounds coordinated to rhodium [Venter et al. (2012a); Damoense et al. (1994)], but share characteristics with other enaminoketones of this type [Venter et al. (2010; 2012b). An unsaturated bond in the pentenone backbone is indicated by the difference in distance between the C2═C3 bond [1.379 (2) Å] and the C3–C4 bond [1.428 (2) Å]. The distance, N11···O12, is greatly increased (~ 0.2 Å) upon coordination. Intramolecular N11—H11···O12 bonding (D—A distance = 2.632 (2) Å was observed, as well as intermolecular interactions for C113—H113···O12i [i = x-0.5, 0.5-y, 1-z; distance = 3.3536 (18) Å] and C115—H115···O12ii [ii = x, y+1, z; distance = 3.3217 (18) Å]. These interactions are illustrated in Fig. 2. The dihedral angle between the benzene ring and pentenone moieties is 46.52 (5)° and is dependent on the position of the substituent on the benzene ring, where para substituents usually display the smallest angles (Venter et al., 2010).