organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-{[2-(di­phenyl­phosphino)phen­yl]thio}­phen­yl)di­phenyl­phosphine sulfide

aServicio Difracción Rayos X, Universidad Autónoma de Barcelona, 08193 Cerdanyola, Spain, and bDepartamento Química, Universidad Autónoma de Barcelona, 08193 Cerdanyola, Spain
*Correspondence e-mail: angel.alvarez@uab.es

(Received 21 September 2012; accepted 2 October 2012; online 10 October 2012)

In the title compound, C36H28P2S2, the dihedral angle between the central benzene rings is 66.95 (13)°. In the crystal, molecules are linked via Car—H⋯π and ππ inter­actions [shortest centroid–centroid distance between benzene rings = 3.897 (2) Å].

Related literature

For related structures, see: Deb & Dutta (2010[Deb, B. & Dutta, D. K. (2010). J. Mol. Catal. A Chem. 326, 21-28.]); Deb et al. (2010[Deb, B., Sarmah, P. P. & Dutta, D. K. (2010). Eur. J. Inorg. Chem. pp. 1710-1716.]); Tooke et al. (2005[Tooke, D. M., Wilting, J., Vogt, D. & Spek, A. L. (2005). Acta Cryst. E61, o2406-o2407.]); Pintado-Alba et al. (2004[Pintado-Alba, A., de la Riva, H., Nieuwhuyzen, M., Bautista, D., Raithby, P. R., Sparkes, H. A., Teat, S. J., López-de-Luzuriaga, J. M. & Lagunas, M. C. (2004). Dalton Trans. pp. 3459-3467.]). For additional information on hemilabile ligands, see: Dallanegra et al. (2012[Dallanegra, R., Chaplin, A. B. & Weller, A. S. (2012). Organometallics, 31, 2720-2728.]); Marimuthu et al. (2012[Marimuthu, T., Bala, M. D. & Friedrich, H. B. (2012). J. Chem. Crystallogr. 42, 251-257.]); Tello-López (2010[Tello-López, I. (2010). PhD thesis, Universitat Autònoma de Barcelona, Spain.]).

[Scheme 1]

Experimental

Crystal data
  • C36H28P2S2

  • Mr = 586.64

  • Triclinic, [P \overline 1]

  • a = 10.8595 (10) Å

  • b = 11.0267 (10) Å

  • c = 13.3031 (12) Å

  • α = 76.404 (2)°

  • β = 79.151 (2)°

  • γ = 81.976 (2)°

  • V = 1513.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.34 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.806, Tmax = 0.941

  • 10362 measured reflections

  • 6991 independent reflections

  • 4414 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.135

  • S = 0.98

  • 6991 reflections

  • 361 parameters

  • H-atom parameters not refined

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C41–C46 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯Cgi 0.93 2.94 3.777 (4) 150
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Metal complexes of hemilabile ligands have been studied in the last few years due to their importance in homogeneous catalysis (Deb et al., 2010; Dallanegra et al., 2012; Marimuthu et al., 2012). The phosphine derivatives (Ia,b), (IIa-d), and (IIIa-f) are a set of hemilabile ligands where the nature of the heteroatoms determines their coordinating ability towards soft or hard metals (Fig. 1). Crystal structures of (Ia), (IIa,b), and (IIIa) have been described (Pintado-Alba et al., 2004; Tooke et al., 2005; Deb et al., 2010; Deb and Dutta, 2010). Here we present the structure of (IId). The molecular structure is shown in Fig. 2. The ability of this molecule to act as a ligand is related to its conformational freedom. The S(hinge)···S(arm) distance depends on the torsional angle C12—C11—P1S1 whereas the S(arm)···P distance depends also on C11—C12—S2—C42 and C12—S2—C42—C41. In this way, the ligand can be coordinated to metals of different sizes. Values found in (IId) for the above torsional angles are -64.1 (2)°, -125.8 (2)° and -154.7 (2)° respectively. In this conformation, distances between coordinating positions are S1···S2 = 3.6803 (12) Å, S2···P2 = 3.1308 (11) Å, and S1···P2 = 6.0924 (13) Å.

Related literature top

For related structures, see: Deb & Dutta (2010); Deb et al. (2010); Tooke et al. (2005); Pintado-Alba et al. (2004). For additional information on hemilabile ligands, see: Dallanegra et al. (2012); Marimuthu et al. (2012); Tello-López (2010).

Experimental top

Bis-[2-(diphenylphosphino)phenyl]sulfane (1.0 g, 1.8 mmol) (obtained as described by Tello-López, 2010), sulfur (58 mg, 1.8 mmol), and CH2Cl2 (50 ml) were placed in a 50 ml Schlenk flask. The mixture was stirred under nitrogen at room temperature for 48 h. The solution was evaporated to dryness and the solid was purified by silica gel chromatography (CH2Cl2/Hexane 3:1) and by crystallization from CH2Cl2/MeOH 1:3 to yield the title product (0.34 g, 32%). 31P{1H} NMR (101 MHz, CDCl3 298 K): δ 43.1(s), -11.2(s) p.p.m. IR (KBr): 3052–2921, 1583–1477, 1434, 1100, 747, 692, 518 cm-1. Single crystals were obtained by evaporation of a toluene solution.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Examples of hemilabile ligands.
[Figure 2] Fig. 2. Molecular structure of the title compound with anisotropic displacement ellipsoids at the 50% probability level.
(2-{[2-(diphenylphosphino)phenyl]thio}phenyl)diphenylphosphine sulfide top
Crystal data top
C36H28P2S2Z = 2
Mr = 586.64F(000) = 612
Triclinic, P1Dx = 1.288 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.8595 (10) ÅCell parameters from 1777 reflections
b = 11.0267 (10) Åθ = 2.6–23.0°
c = 13.3031 (12) ŵ = 0.31 mm1
α = 76.404 (2)°T = 296 K
β = 79.151 (2)°Prism, colourless
γ = 81.976 (2)°0.34 × 0.22 × 0.20 mm
V = 1513.1 (2) Å3
Data collection top
Bruker SMART APEX
diffractometer
6991 independent reflections
Radiation source: fine-focus sealed tube4414 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.13 pixels mm-1θmax = 28.9°, θmin = 1.6°
ϕ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 814
Tmin = 0.806, Tmax = 0.941l = 1717
10362 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters not refined
S = 0.98 w = 1/[σ2(Fo2) + (0.059P)2]
where P = (Fo2 + 2Fc2)/3
6991 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C36H28P2S2γ = 81.976 (2)°
Mr = 586.64V = 1513.1 (2) Å3
Triclinic, P1Z = 2
a = 10.8595 (10) ÅMo Kα radiation
b = 11.0267 (10) ŵ = 0.31 mm1
c = 13.3031 (12) ÅT = 296 K
α = 76.404 (2)°0.34 × 0.22 × 0.20 mm
β = 79.151 (2)°
Data collection top
Bruker SMART APEX
diffractometer
6991 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4414 reflections with I > 2σ(I)
Tmin = 0.806, Tmax = 0.941Rint = 0.029
10362 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.135H-atom parameters not refined
S = 0.98Δρmax = 0.46 e Å3
6991 reflectionsΔρmin = 0.29 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C410.4459 (2)0.2347 (2)0.3240 (2)0.0322 (6)
C420.3286 (3)0.2950 (2)0.3009 (2)0.0337 (6)
C430.2504 (3)0.2351 (3)0.2616 (2)0.0421 (7)
H430.17240.27520.24730.050*
C440.2877 (3)0.1157 (3)0.2436 (2)0.0452 (7)
H440.23430.07580.21790.054*
C450.4029 (3)0.0558 (3)0.2634 (2)0.0466 (8)
H450.42810.02400.25060.056*
C460.4811 (3)0.1158 (3)0.3026 (2)0.0426 (7)
H460.55960.07540.31500.051*
C510.4753 (2)0.2811 (3)0.5186 (2)0.0361 (6)
C520.5194 (3)0.3387 (3)0.5850 (2)0.0468 (7)
H520.58170.39290.55800.056*
C530.4717 (3)0.3165 (3)0.6914 (3)0.0547 (9)
H530.50320.35430.73550.066*
C540.3779 (3)0.2387 (3)0.7314 (2)0.0543 (9)
H540.34610.22330.80270.065*
C550.3308 (3)0.1834 (3)0.6661 (2)0.0507 (8)
H550.26590.13220.69290.061*
C560.3800 (3)0.2038 (3)0.5604 (2)0.0423 (7)
H560.34860.16510.51690.051*
C610.6912 (2)0.2077 (3)0.3795 (2)0.0382 (7)
C620.7832 (3)0.2262 (3)0.2904 (2)0.0507 (8)
H620.76880.29100.23370.061*
C630.8948 (3)0.1504 (4)0.2849 (3)0.0626 (10)
H630.95440.16320.22430.075*
C640.9187 (3)0.0555 (4)0.3690 (3)0.0650 (11)
H640.99440.00420.36540.078*
C650.8313 (3)0.0372 (3)0.4570 (3)0.0601 (9)
H650.84790.02640.51400.072*
C660.7179 (3)0.1118 (3)0.4634 (2)0.0479 (8)
H660.65900.09770.52440.057*
C110.0501 (2)0.5606 (2)0.2821 (2)0.0330 (6)
C120.1193 (2)0.4622 (2)0.3423 (2)0.0330 (6)
C130.0563 (3)0.3762 (3)0.4220 (2)0.0423 (7)
H130.10230.31180.46230.051*
C140.0737 (3)0.3851 (3)0.4424 (2)0.0474 (8)
H140.11480.32650.49570.057*
C150.1419 (3)0.4801 (3)0.3838 (2)0.0506 (8)
H150.22950.48590.39700.061*
C160.0809 (3)0.5676 (3)0.3054 (2)0.0429 (7)
H160.12840.63270.26710.051*
C210.2330 (3)0.6318 (3)0.0877 (2)0.0423 (7)
C220.3334 (3)0.7007 (3)0.0351 (3)0.0560 (9)
H220.34770.77050.05760.067*
C230.4119 (3)0.6655 (4)0.0504 (3)0.0701 (11)
H230.47790.71250.08560.084*
C240.3926 (4)0.5619 (4)0.0831 (3)0.0733 (12)
H240.44570.53860.14040.088*
C250.2949 (4)0.4923 (4)0.0316 (3)0.0667 (10)
H250.28230.42170.05380.080*
C260.2147 (3)0.5276 (3)0.0538 (2)0.0540 (9)
H260.14840.48060.08820.065*
C310.0005 (3)0.7811 (3)0.1210 (2)0.0383 (7)
C320.0465 (3)0.7388 (3)0.0465 (2)0.0541 (8)
H320.01430.66090.03210.065*
C330.1383 (3)0.8088 (3)0.0065 (3)0.0614 (10)
H330.16780.77850.05610.074*
C340.1865 (3)0.9242 (3)0.0142 (3)0.0579 (9)
H340.24820.97230.02210.070*
C350.1440 (3)0.9685 (3)0.0880 (3)0.0552 (9)
H350.17711.04610.10240.066*
C360.0508 (3)0.8964 (3)0.1412 (2)0.0448 (7)
H360.02200.92660.19130.054*
P10.12398 (7)0.69086 (7)0.19072 (6)0.03650 (19)
P20.54595 (7)0.31492 (7)0.37954 (6)0.03589 (19)
S10.19859 (8)0.79139 (8)0.26148 (7)0.0525 (2)
S20.28748 (7)0.45079 (7)0.32212 (6)0.03975 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C410.0324 (14)0.0306 (14)0.0319 (14)0.0022 (11)0.0072 (11)0.0047 (12)
C420.0402 (15)0.0285 (14)0.0313 (14)0.0029 (12)0.0089 (12)0.0055 (12)
C430.0443 (17)0.0390 (17)0.0448 (17)0.0046 (14)0.0201 (14)0.0077 (14)
C440.0531 (19)0.0401 (17)0.0475 (17)0.0036 (14)0.0196 (15)0.0107 (15)
C450.058 (2)0.0345 (16)0.0486 (18)0.0053 (15)0.0144 (15)0.0131 (15)
C460.0408 (17)0.0408 (17)0.0448 (17)0.0091 (13)0.0115 (14)0.0105 (14)
C510.0328 (15)0.0362 (15)0.0379 (15)0.0059 (12)0.0083 (12)0.0083 (13)
C520.0452 (18)0.0511 (19)0.0460 (18)0.0071 (15)0.0071 (14)0.0131 (16)
C530.062 (2)0.061 (2)0.0471 (19)0.0007 (18)0.0130 (17)0.0214 (18)
C540.056 (2)0.059 (2)0.0393 (17)0.0110 (17)0.0005 (16)0.0110 (17)
C550.0415 (18)0.051 (2)0.0509 (19)0.0021 (15)0.0034 (15)0.0045 (16)
C560.0410 (17)0.0403 (17)0.0439 (17)0.0020 (13)0.0065 (14)0.0069 (14)
C610.0321 (15)0.0417 (17)0.0422 (16)0.0028 (13)0.0077 (13)0.0108 (14)
C620.0440 (18)0.061 (2)0.0461 (18)0.0004 (16)0.0088 (15)0.0119 (17)
C630.0427 (19)0.088 (3)0.062 (2)0.0040 (19)0.0042 (17)0.034 (2)
C640.043 (2)0.083 (3)0.079 (3)0.0206 (19)0.0251 (19)0.041 (2)
C650.056 (2)0.060 (2)0.067 (2)0.0154 (18)0.0290 (19)0.0149 (19)
C660.0417 (17)0.0490 (19)0.0471 (18)0.0038 (15)0.0081 (14)0.0028 (16)
C110.0327 (14)0.0326 (15)0.0331 (14)0.0001 (12)0.0066 (12)0.0069 (12)
C120.0338 (14)0.0332 (15)0.0328 (14)0.0000 (12)0.0077 (12)0.0088 (12)
C130.0536 (19)0.0327 (16)0.0380 (16)0.0019 (14)0.0106 (14)0.0015 (13)
C140.055 (2)0.0422 (18)0.0417 (17)0.0144 (15)0.0027 (15)0.0047 (15)
C150.0382 (17)0.0511 (19)0.057 (2)0.0060 (15)0.0022 (15)0.0084 (17)
C160.0370 (16)0.0411 (17)0.0465 (17)0.0038 (13)0.0078 (13)0.0051 (15)
C210.0421 (17)0.0389 (17)0.0392 (16)0.0046 (13)0.0072 (13)0.0003 (14)
C220.0467 (19)0.056 (2)0.053 (2)0.0013 (16)0.0026 (16)0.0043 (17)
C230.054 (2)0.080 (3)0.051 (2)0.006 (2)0.0097 (17)0.015 (2)
C240.076 (3)0.078 (3)0.045 (2)0.024 (2)0.0067 (19)0.003 (2)
C250.083 (3)0.062 (2)0.049 (2)0.014 (2)0.004 (2)0.0173 (19)
C260.058 (2)0.050 (2)0.0473 (19)0.0020 (16)0.0004 (16)0.0087 (17)
C310.0409 (16)0.0348 (16)0.0342 (15)0.0020 (13)0.0061 (13)0.0010 (13)
C320.062 (2)0.0462 (19)0.0534 (19)0.0093 (16)0.0195 (17)0.0096 (17)
C330.069 (2)0.066 (2)0.050 (2)0.0031 (19)0.0292 (18)0.0048 (18)
C340.053 (2)0.060 (2)0.050 (2)0.0073 (17)0.0192 (16)0.0099 (18)
C350.051 (2)0.0460 (19)0.056 (2)0.0128 (16)0.0047 (16)0.0009 (17)
C360.0499 (18)0.0389 (17)0.0403 (16)0.0025 (14)0.0054 (14)0.0038 (14)
P10.0373 (4)0.0316 (4)0.0373 (4)0.0013 (3)0.0079 (3)0.0023 (3)
P20.0335 (4)0.0352 (4)0.0375 (4)0.0007 (3)0.0076 (3)0.0052 (3)
S10.0574 (5)0.0426 (5)0.0608 (5)0.0065 (4)0.0208 (4)0.0079 (4)
S20.0366 (4)0.0311 (4)0.0525 (4)0.0034 (3)0.0158 (3)0.0080 (3)
Geometric parameters (Å, º) top
C41—C461.394 (4)C11—C121.405 (4)
C41—C421.405 (3)C11—P11.822 (3)
C41—P21.840 (3)C12—C131.388 (4)
C42—C431.385 (4)C12—S21.786 (3)
C42—S21.788 (3)C13—C141.381 (4)
C43—C441.384 (4)C13—H130.9300
C43—H430.9300C14—C151.368 (4)
C44—C451.372 (4)C14—H140.9300
C44—H440.9300C15—C161.380 (4)
C45—C461.384 (4)C15—H150.9300
C45—H450.9300C16—H160.9300
C46—H460.9300C21—C261.381 (4)
C51—C561.383 (4)C21—C221.397 (4)
C51—C521.386 (4)C21—P11.815 (3)
C51—P21.836 (3)C22—C231.385 (5)
C52—C531.388 (4)C22—H220.9300
C52—H520.9300C23—C241.369 (5)
C53—C541.372 (4)C23—H230.9300
C53—H530.9300C24—C251.375 (5)
C54—C551.375 (4)C24—H240.9300
C54—H540.9300C25—C261.393 (4)
C55—C561.383 (4)C25—H250.9300
C55—H550.9300C26—H260.9300
C56—H560.9300C31—C361.379 (4)
C61—C661.389 (4)C31—C321.384 (4)
C61—C621.393 (4)C31—P11.828 (3)
C61—P21.834 (3)C32—C331.371 (4)
C62—C631.373 (4)C32—H320.9300
C62—H620.9300C33—C341.376 (4)
C63—C641.377 (5)C33—H330.9300
C63—H630.9300C34—C351.369 (4)
C64—C651.356 (5)C34—H340.9300
C64—H640.9300C35—C361.392 (4)
C65—C661.383 (4)C35—H350.9300
C65—H650.9300C36—H360.9300
C66—H660.9300P1—S11.9494 (11)
C11—C161.393 (4)
S1···S23.6803 (12)S2···P23.1308 (11)
C46—C41—C42117.6 (2)C11—C12—S2120.9 (2)
C46—C41—P2123.1 (2)C14—C13—C12120.9 (3)
C42—C41—P2119.37 (19)C14—C13—H13119.5
C43—C42—C41120.3 (2)C12—C13—H13119.5
C43—C42—S2122.3 (2)C15—C14—C13119.8 (3)
C41—C42—S2117.4 (2)C15—C14—H14120.1
C44—C43—C42120.3 (3)C13—C14—H14120.1
C44—C43—H43119.9C14—C15—C16120.1 (3)
C42—C43—H43119.9C14—C15—H15120.0
C45—C44—C43120.6 (3)C16—C15—H15120.0
C45—C44—H44119.7C15—C16—C11121.6 (3)
C43—C44—H44119.7C15—C16—H16119.2
C44—C45—C46119.1 (3)C11—C16—H16119.2
C44—C45—H45120.4C26—C21—C22118.7 (3)
C46—C45—H45120.4C26—C21—P1122.6 (2)
C45—C46—C41122.1 (3)C22—C21—P1118.4 (2)
C45—C46—H46119.0C23—C22—C21120.3 (4)
C41—C46—H46119.0C23—C22—H22119.8
C56—C51—C52118.3 (3)C21—C22—H22119.8
C56—C51—P2124.2 (2)C24—C23—C22120.3 (4)
C52—C51—P2117.5 (2)C24—C23—H23119.9
C51—C52—C53120.9 (3)C22—C23—H23119.9
C51—C52—H52119.6C23—C24—C25120.2 (3)
C53—C52—H52119.6C23—C24—H24119.9
C54—C53—C52119.8 (3)C25—C24—H24119.9
C54—C53—H53120.1C24—C25—C26120.0 (4)
C52—C53—H53120.1C24—C25—H25120.0
C53—C54—C55120.0 (3)C26—C25—H25120.0
C53—C54—H54120.0C21—C26—C25120.5 (3)
C55—C54—H54120.0C21—C26—H26119.8
C54—C55—C56120.1 (3)C25—C26—H26119.8
C54—C55—H55120.0C36—C31—C32117.8 (3)
C56—C55—H55120.0C36—C31—P1119.8 (2)
C55—C56—C51120.9 (3)C32—C31—P1122.5 (2)
C55—C56—H56119.6C33—C32—C31121.7 (3)
C51—C56—H56119.6C33—C32—H32119.2
C66—C61—C62117.5 (3)C31—C32—H32119.2
C66—C61—P2124.6 (2)C32—C33—C34119.7 (3)
C62—C61—P2117.9 (2)C32—C33—H33120.2
C63—C62—C61121.2 (3)C34—C33—H33120.2
C63—C62—H62119.4C35—C34—C33120.2 (3)
C61—C62—H62119.4C35—C34—H34119.9
C62—C63—C64120.2 (3)C33—C34—H34119.9
C62—C63—H63119.9C34—C35—C36119.5 (3)
C64—C63—H63119.9C34—C35—H35120.2
C65—C64—C63119.6 (3)C36—C35—H35120.2
C65—C64—H64120.2C31—C36—C35121.2 (3)
C63—C64—H64120.2C31—C36—H36119.4
C64—C65—C66120.9 (3)C35—C36—H36119.4
C64—C65—H65119.5C21—P1—C11109.24 (13)
C66—C65—H65119.5C21—P1—C31102.63 (13)
C65—C66—C61120.6 (3)C11—P1—C31105.41 (13)
C65—C66—H66119.7C21—P1—S1114.07 (11)
C61—C66—H66119.7C11—P1—S1112.23 (9)
C16—C11—C12117.9 (3)C31—P1—S1112.52 (10)
C16—C11—P1119.0 (2)C61—P2—C51101.84 (12)
C12—C11—P1122.4 (2)C61—P2—C41101.92 (12)
C13—C12—C11119.7 (3)C51—P2—C41100.97 (13)
C13—C12—S2119.4 (2)C12—S2—C42101.92 (13)
C46—C41—C42—C432.1 (4)P1—C21—C26—C25174.3 (3)
P2—C41—C42—C43178.3 (2)C24—C25—C26—C210.4 (5)
C46—C41—C42—S2176.8 (2)C36—C31—C32—C330.5 (5)
P2—C41—C42—S22.7 (3)P1—C31—C32—C33178.8 (3)
C41—C42—C43—C440.8 (4)C31—C32—C33—C340.0 (5)
S2—C42—C43—C44178.1 (2)C32—C33—C34—C350.6 (5)
C42—C43—C44—C450.6 (4)C33—C34—C35—C360.6 (5)
C43—C44—C45—C460.6 (5)C32—C31—C36—C350.6 (4)
C44—C45—C46—C410.9 (5)P1—C31—C36—C35178.8 (2)
C42—C41—C46—C452.2 (4)C34—C35—C36—C310.0 (5)
P2—C41—C46—C45178.3 (2)C26—C21—P1—C1130.5 (3)
C56—C51—C52—C531.9 (4)C22—C21—P1—C11154.9 (2)
P2—C51—C52—C53179.2 (2)C26—C21—P1—C3181.0 (3)
C51—C52—C53—C541.4 (5)C22—C21—P1—C3193.6 (3)
C52—C53—C54—C550.4 (5)C26—C21—P1—S1157.0 (2)
C53—C54—C55—C561.5 (5)C22—C21—P1—S128.4 (3)
C54—C55—C56—C511.0 (5)C16—C11—P1—C21126.7 (2)
C52—C51—C56—C550.7 (4)C12—C11—P1—C2163.4 (2)
P2—C51—C56—C55179.6 (2)C16—C11—P1—C3117.1 (2)
C66—C61—C62—C631.6 (5)C12—C11—P1—C31173.0 (2)
P2—C61—C62—C63179.5 (2)C16—C11—P1—S1105.7 (2)
C61—C62—C63—C641.2 (5)C12—C11—P1—S164.1 (2)
C62—C63—C64—C650.1 (5)C36—C31—P1—C21137.5 (2)
C63—C64—C65—C660.6 (6)C32—C31—P1—C2141.8 (3)
C64—C65—C66—C610.2 (5)C36—C31—P1—C11108.2 (2)
C62—C61—C66—C650.8 (5)C32—C31—P1—C1172.5 (3)
P2—C61—C66—C65178.6 (2)C36—C31—P1—S114.4 (3)
C16—C11—C12—C130.0 (4)C32—C31—P1—S1164.9 (2)
P1—C11—C12—C13170.0 (2)C66—C61—P2—C5111.4 (3)
C16—C11—C12—S2176.8 (2)C62—C61—P2—C51166.4 (2)
P1—C11—C12—S26.9 (3)C66—C61—P2—C4192.7 (3)
C11—C12—C13—C140.7 (4)C62—C61—P2—C4189.6 (3)
S2—C12—C13—C14177.6 (2)C56—C51—P2—C6199.5 (2)
C12—C13—C14—C150.4 (4)C52—C51—P2—C6181.6 (2)
C13—C14—C15—C160.6 (5)C56—C51—P2—C415.3 (3)
C14—C15—C16—C111.3 (5)C52—C51—P2—C41173.6 (2)
C12—C11—C16—C151.0 (4)C46—C41—P2—C616.1 (3)
P1—C11—C16—C15171.3 (2)C42—C41—P2—C61173.4 (2)
C26—C21—C22—C230.9 (5)C46—C41—P2—C5198.7 (2)
P1—C21—C22—C23173.9 (3)C42—C41—P2—C5181.9 (2)
C21—C22—C23—C240.9 (5)C13—C12—S2—C4257.4 (2)
C22—C23—C24—C250.2 (6)C11—C12—S2—C42125.8 (2)
C23—C24—C25—C260.4 (6)C43—C42—S2—C1226.4 (3)
C22—C21—C26—C250.2 (5)C41—C42—S2—C12154.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C41–C46 ring.
D—H···AD—HH···AD···AD—H···A
C23—H23···Cgi0.932.943.777 (4)150
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC36H28P2S2
Mr586.64
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.8595 (10), 11.0267 (10), 13.3031 (12)
α, β, γ (°)76.404 (2), 79.151 (2), 81.976 (2)
V3)1513.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.34 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.806, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
10362, 6991, 4414
Rint0.029
(sin θ/λ)max1)0.680
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.135, 0.98
No. of reflections6991
No. of parameters361
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.46, 0.29

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C41–C46 ring.
D—H···AD—HH···AD···AD—H···A
C23—H23···Cgi0.932.943.777 (4)150
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

FMC thanks the Ministerio de Educación y Ciencia of Spain for a grant.

References

First citationBruker (2001). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDallanegra, R., Chaplin, A. B. & Weller, A. S. (2012). Organometallics, 31, 2720–2728.  Web of Science CSD CrossRef CAS Google Scholar
First citationDeb, B. & Dutta, D. K. (2010). J. Mol. Catal. A Chem. 326, 21–28.  Web of Science CSD CrossRef CAS Google Scholar
First citationDeb, B., Sarmah, P. P. & Dutta, D. K. (2010). Eur. J. Inorg. Chem. pp. 1710–1716.  Web of Science CSD CrossRef Google Scholar
First citationMarimuthu, T., Bala, M. D. & Friedrich, H. B. (2012). J. Chem. Crystallogr. 42, 251–257.  Web of Science CSD CrossRef CAS Google Scholar
First citationPintado-Alba, A., de la Riva, H., Nieuwhuyzen, M., Bautista, D., Raithby, P. R., Sparkes, H. A., Teat, S. J., López-de-Luzuriaga, J. M. & Lagunas, M. C. (2004). Dalton Trans. pp. 3459–3467.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTello-López, I. (2010). PhD thesis, Universitat Autònoma de Barcelona, Spain.  Google Scholar
First citationTooke, D. M., Wilting, J., Vogt, D. & Spek, A. L. (2005). Acta Cryst. E61, o2406–o2407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds