organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1E,2E)-1,2-Bis[(1-benzyloxymethyl-1H-indol-3-yl)methyl­idene]hydrazine

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 8 October 2012; accepted 10 October 2012; online 20 October 2012)

The title compound, C34H30N4O2, lies on an inversion center and consists of two 3-substituted-1H-indole units linked by a 1,2-dimethyl­enehydrazine bridge. It is one of numerous examples in which two aromatic ring systems are joined by this 4-atom bridge. The geometry of the centrosymmetric bridge is: C(arom)—C = 1.444 (3), C=N = 1.284 (3), N—N = 1.414 (4) Å, C(arom)—C=N = 122.6 (2) and C=N—N = 111.9 (2)°. The nine non-H atoms of the indole unit lie in a plane (δr.m.s. = 0.0089 Å) which is twisted 6.0 (2)° with respect to the hydrazine bridge plane. The benzyl­oxymethyl substituents do not lie in the plane of the rest of the mol­ecule and are in a folded rather than an extended conformation. This is described by the three torsion angles in the middle of the C=N—C—O—CBz group, viz. 98.5 (3), −62.1 (3), and −66.3 (2)°.

Related literature

For the synthesis, see: Shui (1994[Shui, L. (1994). PhD Dissertation, Louisiana State University, Baton Rouge, Louisiana, USA.]). For related structures, see: Burke-Laing & Laing (1976[Burke-Laing, M. & Laing, M. (1976). Acta Cryst. B32, 3216-3224.]); Mom & de With (1978[Mom, V. & de With, G. (1978). Acta Cryst. B34, 2785-2789.]); Biswas et al. (1999[Biswas, K. M., Mallik, H., Saha, A., Halder, S. & McPhail, A. T. (1999). Monatsh. Chem. 130, 1227-1239.]); Rizal et al. (2008[Rizal, M. R., Ali, H. M. & Ng, S. W. (2008). Acta Cryst. E64, o555.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C34H30N4O2

  • Mr = 526.62

  • Monoclinic, P 21 /n

  • a = 12.8518 (10) Å

  • b = 7.9663 (9) Å

  • c = 13.6810 (12) Å

  • β = 103.672 (5)°

  • V = 1361.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 90 K

  • 0.18 × 0.10 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.986, Tmax = 0.996

  • 4340 measured reflections

  • 2678 independent reflections

  • 1481 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.126

  • S = 0.99

  • 2678 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Title compound I was synthesized as part of a project targeting the synthesis of tryptophan and other tyrosine derivatives (Shui, 1994). The molecule occupies a crystallographic inversion center and consists of two 3-substituted 1H-indole moieties linked by a (1E,2E)-1,2-dimethylenehydrazine bridge, one of numerous examples in which two aromatic ring systems are joined by this 4-atom bridge. The bridge geometry is consistent with that found, for example, in Ph—CHN—NCH—Ph [CAS:1048662–10-7, Mom & de With (1978); Burke-Laing & Laing (1976); CSD:BZAZIN02, BZAZIN11, respectively, Allen (2002)]. The geometry of the indole is also consistent with that found in other 1,3-disubstituted indoles [e.g., CSD:OBAVIW, CAS:256391–53-4, Biswas et al. (1999)].

Related literature top

For the synthesis, see: Shui (1994). For related structures, see: Burke-Laing & Laing (1976); Mom & de With (1978); Biswas et al. (1999); Rizal et al. (2008). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The synthesis of I is detailed by Shui (1994), who prepared a suitable single-crystal by recrystallization from dichloromethane.

Refinement top

All H atoms were placed in calculated positions, guided by difference maps, with C—H bond distances 0.95 (aromatic C) and 0.99 (alkyl C) Å, and Uiso=1.2Ueq, thereafter refined as riding.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids)
(1E,2E)-1,2-Bis[(1-benzyloxymethyl-1H-indol- 3-yl)methylidene]hydrazine top
Crystal data top
C34H30N4O2F(000) = 556
Mr = 526.62Dx = 1.285 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2472 reflections
a = 12.8518 (10) Åθ = 2.6–26.0°
b = 7.9663 (9) ŵ = 0.08 mm1
c = 13.6810 (12) ÅT = 90 K
β = 103.672 (5)°Fragment, colorless
V = 1361.0 (2) Å30.18 × 0.10 × 0.05 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
2678 independent reflections
Radiation source: sealed tube1481 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.067
Detector resolution: 9 pixels mm-1θmax = 26.0°, θmin = 3.0°
CCD rotation images, thick slices scansh = 1515
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor 1997)
k = 89
Tmin = 0.986, Tmax = 0.996l = 1616
4340 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.249P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
2678 reflectionsΔρmax = 0.25 e Å3
182 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0062 (13)
Primary atom site location: structure-invariant direct methods
Crystal data top
C34H30N4O2V = 1361.0 (2) Å3
Mr = 526.62Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.8518 (10) ŵ = 0.08 mm1
b = 7.9663 (9) ÅT = 90 K
c = 13.6810 (12) Å0.18 × 0.10 × 0.05 mm
β = 103.672 (5)°
Data collection top
Nonius KappaCCD
diffractometer
2678 independent reflections
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor 1997)
1481 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.996Rint = 0.067
4340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 0.99Δρmax = 0.25 e Å3
2678 reflectionsΔρmin = 0.25 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.02086 (15)0.0030 (3)0.55263 (14)0.0211 (5)
C10.11765 (18)0.0511 (3)0.57786 (17)0.0206 (6)
H10.150.09170.52680.025*
C20.17927 (18)0.0526 (3)0.68083 (16)0.0191 (6)
C30.14858 (18)0.0067 (3)0.77188 (17)0.0180 (6)
C40.05355 (19)0.0445 (3)0.79619 (18)0.0207 (6)
H40.01080.05380.74520.025*
C50.05426 (19)0.0813 (3)0.89494 (18)0.0236 (6)
H50.00980.11780.91150.028*
C60.14857 (19)0.0654 (3)0.97152 (19)0.0258 (7)
H60.1470.09151.03890.031*
C70.24299 (19)0.0127 (3)0.95068 (17)0.0226 (6)
H70.30660.00111.00230.027*
C80.24147 (18)0.0229 (3)0.85072 (17)0.0182 (6)
N20.32454 (15)0.0785 (3)0.81007 (14)0.0190 (5)
C90.28592 (19)0.0961 (3)0.70805 (17)0.0205 (6)
H90.32690.1330.66280.025*
C100.43362 (18)0.1094 (3)0.86494 (18)0.0218 (6)
H10A0.43270.16570.92930.026*
H10B0.4680.18660.82540.026*
O10.49589 (12)0.0398 (2)0.88566 (11)0.0225 (4)
C110.50844 (19)0.1279 (3)0.79804 (18)0.0241 (6)
H11A0.54350.2370.81940.029*
H11B0.43650.1520.75520.029*
C120.57299 (18)0.0365 (3)0.73523 (18)0.0219 (6)
C130.5658 (2)0.0890 (3)0.63721 (18)0.0276 (7)
H130.51680.17540.60920.033*
C140.6293 (2)0.0168 (4)0.57959 (19)0.0329 (7)
H140.62480.05620.51320.039*
C150.6992 (2)0.1122 (4)0.6180 (2)0.0352 (7)
H150.74230.16190.57820.042*
C160.7056 (2)0.1679 (4)0.71520 (19)0.0328 (7)
H160.75250.25760.74190.039*
C170.64369 (19)0.0929 (3)0.77379 (19)0.0263 (7)
H170.64970.13040.84080.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0247 (12)0.0193 (12)0.0164 (10)0.0004 (11)0.0011 (9)0.0027 (10)
C10.0221 (14)0.0174 (15)0.0212 (13)0.0012 (12)0.0030 (11)0.0005 (11)
C20.0203 (12)0.0162 (14)0.0186 (13)0.0005 (11)0.0004 (10)0.0009 (11)
C30.0209 (12)0.0141 (14)0.0185 (13)0.0019 (12)0.0038 (10)0.0015 (11)
C40.0190 (12)0.0189 (14)0.0225 (14)0.0022 (12)0.0017 (10)0.0011 (12)
C50.0235 (13)0.0229 (16)0.0272 (14)0.0017 (12)0.0116 (11)0.0002 (12)
C60.0292 (15)0.0261 (17)0.0228 (14)0.0024 (13)0.0074 (12)0.0007 (12)
C70.0253 (13)0.0217 (15)0.0189 (13)0.0000 (13)0.0016 (11)0.0007 (12)
C80.0196 (12)0.0136 (14)0.0218 (13)0.0007 (12)0.0059 (10)0.0000 (11)
N20.0198 (11)0.0198 (13)0.0161 (11)0.0003 (9)0.0013 (8)0.0012 (9)
C90.0237 (13)0.0197 (15)0.0172 (13)0.0002 (12)0.0031 (10)0.0017 (11)
C100.0214 (13)0.0179 (15)0.0242 (14)0.0003 (12)0.0016 (11)0.0000 (12)
O10.0240 (9)0.0201 (10)0.0220 (9)0.0030 (8)0.0025 (7)0.0021 (8)
C110.0241 (13)0.0227 (15)0.0252 (14)0.0006 (12)0.0052 (11)0.0048 (12)
C120.0209 (13)0.0204 (14)0.0224 (13)0.0035 (12)0.0016 (11)0.0009 (12)
C130.0292 (14)0.0246 (16)0.0274 (15)0.0002 (13)0.0031 (12)0.0045 (13)
C140.0357 (15)0.0386 (19)0.0251 (15)0.0055 (15)0.0088 (12)0.0007 (14)
C150.0326 (16)0.0410 (19)0.0348 (17)0.0004 (15)0.0136 (13)0.0079 (15)
C160.0295 (15)0.0346 (18)0.0324 (16)0.0066 (14)0.0036 (12)0.0025 (14)
C170.0229 (14)0.0330 (17)0.0218 (14)0.0017 (13)0.0030 (11)0.0008 (13)
Geometric parameters (Å, º) top
N1—C11.284 (3)C9—H90.95
N1—N1i1.414 (4)C10—O11.424 (3)
C1—C21.444 (3)C10—H10A0.99
C1—H10.95C10—H10B0.99
C2—C91.377 (3)O1—C111.431 (3)
C2—C31.440 (3)C11—C121.514 (3)
C3—C41.400 (3)C11—H11A0.99
C3—C81.413 (3)C11—H11B0.99
C4—C51.380 (3)C12—C131.387 (3)
C4—H40.95C12—C171.393 (4)
C5—C61.408 (3)C13—C141.386 (3)
C5—H50.95C13—H130.95
C6—C71.376 (3)C14—C151.384 (4)
C6—H60.95C14—H140.95
C7—C81.392 (3)C15—C161.385 (4)
C7—H70.95C15—H150.95
C8—N21.388 (3)C16—C171.391 (3)
N2—C91.373 (3)C16—H160.95
N2—C101.446 (3)C17—H170.95
C1—N1—N1i111.9 (2)O1—C10—N2113.05 (19)
N1—C1—C2122.6 (2)O1—C10—H10A109
N1—C1—H1118.7N2—C10—H10A109
C2—C1—H1118.7O1—C10—H10B109
C9—C2—C3106.77 (19)N2—C10—H10B109
C9—C2—C1123.2 (2)H10A—C10—H10B107.8
C3—C2—C1130.0 (2)C10—O1—C11114.34 (17)
C4—C3—C8118.2 (2)O1—C11—C12115.2 (2)
C4—C3—C2135.4 (2)O1—C11—H11A108.5
C8—C3—C2106.41 (19)C12—C11—H11A108.5
C5—C4—C3119.3 (2)O1—C11—H11B108.5
C5—C4—H4120.3C12—C11—H11B108.5
C3—C4—H4120.3H11A—C11—H11B107.5
C4—C5—C6121.0 (2)C13—C12—C17118.5 (2)
C4—C5—H5119.5C13—C12—C11118.9 (2)
C6—C5—H5119.5C17—C12—C11122.5 (2)
C7—C6—C5121.3 (2)C12—C13—C14120.8 (2)
C7—C6—H6119.4C12—C13—H13119.6
C5—C6—H6119.4C14—C13—H13119.6
C6—C7—C8117.2 (2)C15—C14—C13120.5 (2)
C6—C7—H7121.4C15—C14—H14119.7
C8—C7—H7121.4C13—C14—H14119.7
N2—C8—C7128.7 (2)C16—C15—C14119.3 (3)
N2—C8—C3108.3 (2)C16—C15—H15120.4
C7—C8—C3123.0 (2)C14—C15—H15120.4
C9—N2—C8108.20 (19)C15—C16—C17120.2 (3)
C9—N2—C10125.7 (2)C15—C16—H16119.9
C8—N2—C10126.11 (19)C17—C16—H16119.9
N2—C9—C2110.3 (2)C16—C17—C12120.7 (2)
N2—C9—H9124.9C16—C17—H17119.6
C2—C9—H9124.9C12—C17—H17119.6
C1i—N1i—N1—C1180C7—C8—N2—C101.0 (4)
N1i—N1—C1—C2177.9 (2)C3—C8—N2—C10179.2 (2)
N1—C1—C2—C9174.1 (2)C8—N2—C9—C20.2 (3)
N1—C1—C2—C33.4 (4)C10—N2—C9—C2178.6 (2)
C9—C2—C3—C4178.3 (3)C3—C2—C9—N20.8 (3)
C1—C2—C3—C44.0 (5)C1—C2—C9—N2177.2 (2)
C9—C2—C3—C81.0 (3)C9—N2—C10—O198.5 (3)
C1—C2—C3—C8176.8 (2)C8—N2—C10—O180.1 (3)
C8—C3—C4—C51.6 (4)N2—C10—O1—C1162.1 (3)
C2—C3—C4—C5179.2 (3)C10—O1—C11—C1266.3 (2)
C3—C4—C5—C61.0 (4)O1—C11—C12—C13163.0 (2)
C4—C5—C6—C70.0 (4)O1—C11—C12—C1720.4 (3)
C5—C6—C7—C80.5 (4)C17—C12—C13—C141.4 (4)
C6—C7—C8—N2179.5 (2)C11—C12—C13—C14175.3 (2)
C6—C7—C8—C30.2 (4)C12—C13—C14—C151.7 (4)
C4—C3—C8—N2178.5 (2)C13—C14—C15—C160.4 (4)
C2—C3—C8—N20.9 (3)C14—C15—C16—C171.0 (4)
C4—C3—C8—C71.2 (4)C15—C16—C17—C121.3 (4)
C2—C3—C8—C7179.4 (2)C13—C12—C17—C160.0 (4)
C7—C8—N2—C9179.8 (3)C11—C12—C17—C16176.7 (2)
C3—C8—N2—C90.4 (3)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC34H30N4O2
Mr526.62
Crystal system, space groupMonoclinic, P21/n
Temperature (K)90
a, b, c (Å)12.8518 (10), 7.9663 (9), 13.6810 (12)
β (°) 103.672 (5)
V3)1361.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.18 × 0.10 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(HKL SCALEPACK; Otwinowski & Minor 1997)
Tmin, Tmax0.986, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
4340, 2678, 1481
Rint0.067
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.126, 0.99
No. of reflections2678
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.25

Computer programs: COLLECT (Nonius, 2000), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor 1997), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

 

Acknowledgements

The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents. We thank Dr Lee Shui for kindly providing the sample.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBiswas, K. M., Mallik, H., Saha, A., Halder, S. & McPhail, A. T. (1999). Monatsh. Chem. 130, 1227–1239.  CAS Google Scholar
First citationBurke-Laing, M. & Laing, M. (1976). Acta Cryst. B32, 3216–3224.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMom, V. & de With, G. (1978). Acta Cryst. B34, 2785–2789.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRizal, M. R., Ali, H. M. & Ng, S. W. (2008). Acta Cryst. E64, o555.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShui, L. (1994). PhD Dissertation, Louisiana State University, Baton Rouge, Louisiana, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds