organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4′-(4-Chloro­phen­yl)-3′-(4-meth­­oxy­phen­yl)-3,4-di­hydro-1H,4′H-spiro­[acridine-2,5′-isoxazol]-1-one

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Chemistry, School of Organic Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 25 September 2012; accepted 11 October 2012; online 20 October 2012)

In the title compound, C28H21ClN2O3, the quinoline ring system is essentially planar with a maximum deviation of 0.0436 (17) Å. The isoxazole and cyclo­hexane rings adopt envelope conformations. The isoxazole ring is almost orthogonal to both the quinoline ring system and the cyclo­hexane ring, making dihedral angles of 85.75 (8) and 81.46 (9) °, respectively. The O atom deviates signifigantly from the six-membered carbocyclic ring by 0.3947 (16) Å. In the crystal, mol­ecules are linked into inversion dimers via pairs of C—H⋯O inter­actions, resulting in R22(24) ring motifs.

Related literature

For the uses and biological importance of acridines, see: Asthana et al. (1991[Asthana, P., Rastogi, S., Ghose, S. & Das, S. R. (1991). Indian J. Chem. Sect. B. 30, 893-900.]); Di Giorgio et al. (2005[Di Giorgio, C., De Meo, M., Chiron, J., Delmas, F., Nikoyan, A., Severine, J., Dumeneil, G., Timon-David, P. & Galy, J.-P. (2005). Bioorg. Med. Chem. 13, 5560-5568.]); Talacki et al. (1974[Talacki, R., Carrell, H. L. & Glusker, J. P. (1974). Acta Cryst. B30, 1044-1047.]). For related structures, see: Sridharan et al. (2009[Sridharan, M., Rajendra Prasad, K. J. & Zeller, M. (2009). Acta Cryst. E65, o1064.]); Trzybiński et al. (2010[Trzybiński, D., Zadykowicz, B., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o828-o829.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C28H21ClN2O3

  • Mr = 468.92

  • Monoclinic, P 21 /n

  • a = 12.1626 (4) Å

  • b = 16.2747 (6) Å

  • c = 12.1960 (4) Å

  • β = 107.704 (2)°

  • V = 2299.78 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.932, Tmax = 0.951

  • 21438 measured reflections

  • 4288 independent reflections

  • 3335 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.108

  • S = 1.04

  • 4288 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22B⋯O1i 0.96 2.54 3.351 (2) 142
Symmetry code: (i) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Acridine derivatives are biologically important compounds, which are found to possess mutagenic, antitumour (Talacki et al., 1974), antibacterial, antiamoebic, hypersensitive, antiinflammatory and antiimplantation (Asthana et al., 1991) activities. Also, they have been shown to exert toxicity towards plasmodium, trypanosoma and leishmania parasites (Di Giorgio et al., 2005). Against this backround, X-ray study of the title compound has been carried out to study its structural aspects.

The title compound (Fig. 1), comprises an acridinone ring system, an isoxazole ring attached to a chlorophenyl and a methoxyphenyl rings. The quinoline ring system forms a dihedral angle of 88.06 (7) ° with the chlorophenyl ring (C23–C28), which shows that they are almost orthogonal to each other. The methoxy phenyl ring (C16–C21) forms a dihedral angle of 76.26 (7) ° with the quinoline ring system.

The cyclohexane ring (C8–C13) adopts a C11-envelope conformation with C11 0.3024 (19) Å out of the mean-plane formed by the remaining ring atoms. The cyclohexane ring forms a dihedral angle of 83.02 (8) ° with the chlorophenyl ring (C23–C28), which shows that they are almost perpendicular to each other. The oxygen atom (O1) significantly deviates from the cyclohexane by -0.3947 (16) Å. The methoxy phenyl ring (C16–C21) forms an interplanar angle of 71.43 (9) ° with the cyclohexane ring.

The isoxazole ring (N2/O2/C12/C14/C15) adopts a C12-envelope conformation with C12 0.1417 (17) Å out of the mean-plane formed by the remaining ring atoms. The isoxazole ring forms a dihedral angle of 85.75 (7) ° and 81.46 (9) ° with the quinoline bicyclic ring system and the cyclohexane ring, respectively. The title compound exibits structural similarities with already reported related structures (Sridharan et al., 2009; Trzybiński et al., 2010).

In the crystal, molecules are linked via C22—H22···O1i intermolecular interactions resulting in R22(24) graph-set ring motifs (Tab. 1 & Fig. 2).

Related literature top

For the uses and biological importance of acridines, see: Asthana et al. (1991); Di Giorgio et al. (2005); Talacki et al. (1974). For related structures, see: Sridharan et al. (2009); Trzybiński et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of 3,4-dihydroacridin-1(2H)-one(200 mg, 1 mmol), 4-chloro benzaldehyde (168 mg, 1.2 mmol) and KOH (84 mg, 1.5 mmol) in dimethoxy ethane (DME) (3 ml) was stirred at ambient temperature for 30 min. Then, N-hydroxy-4-ethoxybenzimi doyl chloride (278 mg, 1.5 mmol) was added subsequently to the reaction mixture and stirred at room temperature for 10–12 h. The progress of the reaction was monitored by thin-layer chromatography with petroleum ether-ethyl acetate (4:1 v/v) mixture as eluent. After completion of the reaction, the reaction mixture was extracted with ethyl acetate (2x20 ml), washed with water (2x10 ml), dried over anhydrous Na2SO4 and concentrated under reduced pressure. The residue thus obtained was recrystallized from diethyl-ether to afford the title compound as off white solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethanol at room temperature (Yield = 88%; m.p. = 463–465 K).

Refinement top

The positions of the hydrogen atoms were localized from the difference electron density maps and the distances were geometrically constrained using a riding model, with C—H = 0.93, 0.96, 0.97 and 0.98 Å, for aryl, methyl, methylene and methine H-atoms, respectively; the rotation angles for methyl groups were optimized by least squares. The Uiso(H) were allowed at 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing intramolecular hydrogen bond, which generates S(5) ring motif with the atom numbering scheme. The displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down a-axis, showing C—H···O hydrogen bonds. The hydrogen atoms not involved in the hydrogen bonding have been excluded for clarity.
4'-(4-Chlorophenyl)-3'-(4-methoxyphenyl)-3,4-dihydro-1H,4'H- spiro[acridine-2,5'-isoxazol]-1-one top
Crystal data top
C28H21ClN2O3F(000) = 976
Mr = 468.92Dx = 1.354 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4288 reflections
a = 12.1626 (4) Åθ = 2.1–25.5°
b = 16.2747 (6) ŵ = 0.20 mm1
c = 12.1960 (4) ÅT = 293 K
β = 107.704 (2)°Block, colourless
V = 2299.78 (14) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4288 independent reflections
Radiation source: fine-focus sealed tube3335 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω & ϕ scansθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.932, Tmax = 0.951k = 1912
21438 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.050P)2 + 0.5964P]
where P = (Fo2 + 2Fc2)/3
4288 reflections(Δ/σ)max < 0.001
308 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C28H21ClN2O3V = 2299.78 (14) Å3
Mr = 468.92Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.1626 (4) ŵ = 0.20 mm1
b = 16.2747 (6) ÅT = 293 K
c = 12.1960 (4) Å0.35 × 0.30 × 0.25 mm
β = 107.704 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4288 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3335 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.951Rint = 0.022
21438 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.04Δρmax = 0.16 e Å3
4288 reflectionsΔρmin = 0.32 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.51626 (16)0.61689 (10)0.26429 (14)0.0516 (4)
C20.5366 (2)0.70100 (12)0.29072 (18)0.0739 (6)
H20.50950.72510.34670.089*
C30.5955 (2)0.74654 (13)0.2347 (2)0.0889 (8)
H30.60920.80180.25310.107*
C40.6362 (2)0.71204 (13)0.1497 (2)0.0869 (7)
H40.67620.74460.11200.104*
C50.61798 (19)0.63173 (12)0.12133 (17)0.0660 (5)
H50.64510.60940.06420.079*
C60.55787 (15)0.58187 (10)0.17851 (14)0.0482 (4)
C70.54119 (14)0.49764 (10)0.15899 (13)0.0446 (4)
H70.56860.47200.10430.054*
C80.48489 (13)0.45288 (9)0.21986 (13)0.0423 (4)
C90.44077 (14)0.49391 (10)0.30074 (14)0.0475 (4)
C100.37302 (18)0.44738 (11)0.36349 (18)0.0627 (5)
H10A0.29160.45260.32180.075*
H10B0.38570.47190.43880.075*
C110.40392 (17)0.35664 (11)0.37858 (16)0.0567 (5)
H11A0.48030.35080.43330.068*
H11B0.34970.32880.41000.068*
C120.40180 (14)0.31634 (10)0.26607 (14)0.0467 (4)
C130.48103 (15)0.36219 (10)0.21037 (14)0.0468 (4)
C140.42268 (14)0.22334 (10)0.26635 (14)0.0448 (4)
H140.50130.21300.26400.054*
C150.33752 (14)0.20169 (10)0.15118 (14)0.0449 (4)
C160.33480 (13)0.12310 (10)0.09231 (13)0.0435 (4)
C170.26043 (14)0.10992 (11)0.01813 (14)0.0501 (4)
H170.20990.15130.05490.060*
C180.26084 (16)0.03676 (12)0.07315 (16)0.0584 (5)
H180.21200.02960.14770.070*
C190.33278 (15)0.02670 (11)0.01948 (15)0.0536 (4)
C200.40733 (16)0.01496 (11)0.08936 (15)0.0540 (4)
H200.45680.05690.12620.065*
C210.40808 (15)0.05969 (10)0.14348 (14)0.0506 (4)
H210.45950.06750.21670.061*
C220.3844 (2)0.16692 (15)0.0262 (2)0.0926 (8)
H22A0.46570.15590.00480.139*
H22B0.36640.21300.07770.139*
H22C0.36280.17920.04150.139*
C230.40203 (13)0.17522 (10)0.36436 (14)0.0443 (4)
C240.49351 (14)0.14896 (10)0.45562 (14)0.0499 (4)
H240.56850.16200.45750.060*
C250.47519 (15)0.10362 (11)0.54396 (15)0.0548 (4)
H250.53740.08580.60470.066*
C260.36501 (15)0.08517 (10)0.54149 (15)0.0516 (4)
C270.27278 (16)0.11154 (13)0.45300 (17)0.0649 (5)
H270.19790.09930.45250.078*
C280.29163 (16)0.15627 (13)0.36468 (16)0.0629 (5)
H280.22900.17400.30430.075*
N10.45730 (13)0.57296 (9)0.32294 (13)0.0543 (4)
N20.26411 (13)0.25830 (9)0.10843 (13)0.0567 (4)
O10.53811 (14)0.32611 (8)0.16053 (13)0.0750 (4)
O20.28725 (10)0.32714 (7)0.18368 (12)0.0614 (3)
O30.32257 (13)0.09704 (10)0.08155 (13)0.0823 (5)
Cl10.34045 (5)0.02721 (3)0.65159 (4)0.07358 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0578 (10)0.0442 (9)0.0463 (9)0.0045 (8)0.0059 (8)0.0001 (7)
C20.1067 (18)0.0453 (10)0.0647 (12)0.0030 (11)0.0186 (12)0.0045 (9)
C30.137 (2)0.0438 (11)0.0812 (15)0.0120 (12)0.0265 (15)0.0027 (11)
C40.127 (2)0.0545 (12)0.0821 (15)0.0121 (13)0.0364 (15)0.0165 (11)
C50.0846 (14)0.0557 (11)0.0584 (11)0.0003 (10)0.0227 (10)0.0138 (9)
C60.0507 (10)0.0461 (9)0.0416 (9)0.0040 (7)0.0051 (7)0.0063 (7)
C70.0449 (9)0.0482 (9)0.0384 (8)0.0044 (7)0.0092 (7)0.0006 (7)
C80.0390 (8)0.0452 (8)0.0417 (8)0.0003 (7)0.0105 (7)0.0056 (7)
C90.0452 (9)0.0477 (9)0.0496 (9)0.0029 (7)0.0143 (8)0.0076 (7)
C100.0665 (12)0.0602 (11)0.0751 (13)0.0034 (9)0.0417 (10)0.0148 (9)
C110.0616 (11)0.0570 (10)0.0628 (11)0.0077 (9)0.0357 (9)0.0076 (9)
C120.0406 (9)0.0476 (9)0.0516 (9)0.0028 (7)0.0136 (7)0.0040 (7)
C130.0507 (10)0.0457 (9)0.0468 (9)0.0013 (7)0.0190 (8)0.0074 (7)
C140.0361 (8)0.0471 (9)0.0490 (9)0.0031 (7)0.0096 (7)0.0035 (7)
C150.0394 (9)0.0471 (9)0.0455 (9)0.0047 (7)0.0088 (7)0.0034 (7)
C160.0407 (8)0.0482 (9)0.0402 (8)0.0073 (7)0.0103 (7)0.0022 (7)
C170.0426 (9)0.0595 (10)0.0442 (9)0.0054 (8)0.0071 (7)0.0054 (8)
C180.0496 (10)0.0785 (13)0.0425 (9)0.0111 (9)0.0072 (8)0.0092 (9)
C190.0459 (10)0.0649 (11)0.0532 (10)0.0096 (8)0.0201 (8)0.0163 (8)
C200.0530 (10)0.0543 (10)0.0548 (10)0.0026 (8)0.0164 (9)0.0035 (8)
C210.0498 (10)0.0554 (10)0.0409 (9)0.0001 (8)0.0054 (7)0.0026 (7)
C220.0970 (18)0.0700 (14)0.119 (2)0.0041 (13)0.0450 (16)0.0304 (14)
C230.0385 (9)0.0451 (8)0.0451 (9)0.0041 (7)0.0064 (7)0.0032 (7)
C240.0374 (9)0.0579 (10)0.0500 (9)0.0025 (7)0.0068 (7)0.0049 (8)
C250.0474 (10)0.0636 (11)0.0457 (9)0.0054 (8)0.0028 (8)0.0030 (8)
C260.0548 (11)0.0492 (9)0.0475 (9)0.0035 (8)0.0107 (8)0.0014 (7)
C270.0425 (10)0.0825 (13)0.0650 (12)0.0124 (9)0.0093 (9)0.0169 (10)
C280.0406 (10)0.0816 (13)0.0578 (11)0.0067 (9)0.0020 (8)0.0187 (10)
N10.0617 (9)0.0479 (8)0.0527 (8)0.0059 (7)0.0166 (7)0.0077 (7)
N20.0490 (9)0.0519 (8)0.0615 (9)0.0005 (7)0.0056 (7)0.0015 (7)
O10.1038 (11)0.0492 (7)0.0994 (11)0.0016 (7)0.0715 (9)0.0109 (7)
O20.0469 (7)0.0501 (7)0.0803 (9)0.0050 (5)0.0088 (6)0.0060 (6)
O30.0778 (10)0.0812 (10)0.0823 (10)0.0009 (8)0.0162 (8)0.0380 (8)
Cl10.0750 (4)0.0798 (4)0.0645 (3)0.0019 (3)0.0190 (3)0.0220 (3)
Geometric parameters (Å, º) top
C1—N11.360 (2)C14—H140.9800
C1—C21.411 (3)C15—N21.279 (2)
C1—C61.413 (2)C15—C161.462 (2)
C2—C31.352 (3)C16—C211.382 (2)
C2—H20.9300C16—C171.392 (2)
C3—C41.395 (3)C17—C181.367 (3)
C3—H30.9300C17—H170.9300
C4—C51.353 (3)C18—C191.383 (3)
C4—H40.9300C18—H180.9300
C5—C61.410 (3)C19—O31.357 (2)
C5—H50.9300C19—C201.374 (3)
C6—C71.396 (2)C20—C211.381 (2)
C7—C81.364 (2)C20—H200.9300
C7—H70.9300C21—H210.9300
C8—C91.424 (2)C22—O31.416 (3)
C8—C131.480 (2)C22—H22A0.9600
C9—N11.317 (2)C22—H22B0.9600
C9—C101.491 (3)C22—H22C0.9600
C10—C111.521 (3)C23—C281.379 (2)
C10—H10A0.9700C23—C241.381 (2)
C10—H10B0.9700C24—C251.379 (2)
C11—C121.514 (2)C24—H240.9300
C11—H11A0.9700C25—C261.365 (3)
C11—H11B0.9700C25—H250.9300
C12—O21.460 (2)C26—C271.368 (3)
C12—C131.531 (2)C26—Cl11.7396 (18)
C12—C141.535 (2)C27—C281.376 (3)
C13—O11.2053 (19)C27—H270.9300
C14—C151.512 (2)C28—H280.9300
C14—C231.513 (2)N2—O21.4210 (18)
N1—C1—C2118.29 (17)C23—C14—H14109.4
N1—C1—C6122.83 (15)C12—C14—H14109.4
C2—C1—C6118.88 (18)N2—C15—C16121.43 (14)
C3—C2—C1120.0 (2)N2—C15—C14114.02 (14)
C3—C2—H2120.0C16—C15—C14124.54 (14)
C1—C2—H2120.0C21—C16—C17117.51 (15)
C2—C3—C4121.1 (2)C21—C16—C15121.08 (14)
C2—C3—H3119.4C17—C16—C15121.40 (15)
C4—C3—H3119.4C18—C17—C16120.71 (17)
C5—C4—C3120.7 (2)C18—C17—H17119.6
C5—C4—H4119.6C16—C17—H17119.6
C3—C4—H4119.6C17—C18—C19120.95 (16)
C4—C5—C6119.9 (2)C17—C18—H18119.5
C4—C5—H5120.0C19—C18—H18119.5
C6—C5—H5120.0O3—C19—C20125.29 (18)
C7—C6—C5123.44 (17)O3—C19—C18115.38 (16)
C7—C6—C1117.14 (15)C20—C19—C18119.33 (16)
C5—C6—C1119.35 (16)C19—C20—C21119.37 (17)
C8—C7—C6120.19 (15)C19—C20—H20120.3
C8—C7—H7119.9C21—C20—H20120.3
C6—C7—H7119.9C20—C21—C16122.09 (16)
C7—C8—C9118.93 (15)C20—C21—H21119.0
C7—C8—C13119.96 (14)C16—C21—H21119.0
C9—C8—C13120.80 (15)O3—C22—H22A109.5
N1—C9—C8122.28 (16)O3—C22—H22B109.5
N1—C9—C10117.66 (15)H22A—C22—H22B109.5
C8—C9—C10120.06 (15)O3—C22—H22C109.5
C9—C10—C11113.61 (15)H22A—C22—H22C109.5
C9—C10—H10A108.8H22B—C22—H22C109.5
C11—C10—H10A108.8C28—C23—C24118.38 (16)
C9—C10—H10B108.8C28—C23—C14120.92 (14)
C11—C10—H10B108.8C24—C23—C14120.70 (14)
H10A—C10—H10B107.7C25—C24—C23120.90 (16)
C12—C11—C10112.05 (15)C25—C24—H24119.6
C12—C11—H11A109.2C23—C24—H24119.6
C10—C11—H11A109.2C26—C25—C24119.44 (16)
C12—C11—H11B109.2C26—C25—H25120.3
C10—C11—H11B109.2C24—C25—H25120.3
H11A—C11—H11B107.9C25—C26—C27120.84 (17)
O2—C12—C11108.75 (14)C25—C26—Cl1120.02 (14)
O2—C12—C13103.51 (13)C27—C26—Cl1119.15 (14)
C11—C12—C13110.57 (13)C26—C27—C28119.46 (17)
O2—C12—C14104.06 (12)C26—C27—H27120.3
C11—C12—C14117.92 (14)C28—C27—H27120.3
C13—C12—C14110.82 (13)C27—C28—C23120.98 (16)
O1—C13—C8121.04 (15)C27—C28—H28119.5
O1—C13—C12121.54 (15)C23—C28—H28119.5
C8—C13—C12117.42 (14)C9—N1—C1118.51 (15)
C15—C14—C23112.46 (13)C15—N2—O2109.16 (13)
C15—C14—C1299.30 (13)N2—O2—C12108.05 (11)
C23—C14—C12116.44 (13)C19—O3—C22117.80 (17)
C15—C14—H14109.4
N1—C1—C2—C3179.6 (2)C23—C14—C15—C1669.6 (2)
C6—C1—C2—C30.3 (3)C12—C14—C15—C16166.66 (15)
C1—C2—C3—C40.6 (4)N2—C15—C16—C21174.46 (16)
C2—C3—C4—C50.3 (4)C14—C15—C16—C214.1 (2)
C3—C4—C5—C60.4 (4)N2—C15—C16—C177.0 (2)
C4—C5—C6—C7176.28 (19)C14—C15—C16—C17174.36 (15)
C4—C5—C6—C10.6 (3)C21—C16—C17—C180.1 (2)
N1—C1—C6—C73.1 (2)C15—C16—C17—C18178.42 (16)
C2—C1—C6—C7176.80 (17)C16—C17—C18—C191.7 (3)
N1—C1—C6—C5179.79 (17)C17—C18—C19—O3177.97 (17)
C2—C1—C6—C50.3 (3)C17—C18—C19—C202.0 (3)
C5—C6—C7—C8178.18 (16)O3—C19—C20—C21179.31 (17)
C1—C6—C7—C81.2 (2)C18—C19—C20—C210.7 (3)
C6—C7—C8—C91.8 (2)C19—C20—C21—C160.9 (3)
C6—C7—C8—C13171.81 (15)C17—C16—C21—C201.2 (3)
C7—C8—C9—N13.4 (2)C15—C16—C21—C20179.77 (16)
C13—C8—C9—N1170.19 (16)C15—C14—C23—C2836.3 (2)
C7—C8—C9—C10176.47 (16)C12—C14—C23—C2877.3 (2)
C13—C8—C9—C1010.0 (2)C15—C14—C23—C24143.45 (15)
N1—C9—C10—C11152.60 (17)C12—C14—C23—C24102.91 (18)
C8—C9—C10—C1127.5 (3)C28—C23—C24—C251.2 (3)
C9—C10—C11—C1250.9 (2)C14—C23—C24—C25178.64 (15)
C10—C11—C12—O257.63 (19)C23—C24—C25—C260.6 (3)
C10—C11—C12—C1355.4 (2)C24—C25—C26—C270.4 (3)
C10—C11—C12—C14175.68 (14)C24—C25—C26—Cl1179.40 (13)
C7—C8—C13—O18.9 (3)C25—C26—C27—C280.9 (3)
C9—C8—C13—O1164.63 (17)Cl1—C26—C27—C28178.95 (16)
C7—C8—C13—C12171.04 (14)C26—C27—C28—C230.3 (3)
C9—C8—C13—C1215.5 (2)C24—C23—C28—C270.7 (3)
O2—C12—C13—O1101.47 (19)C14—C23—C28—C27179.10 (18)
C11—C12—C13—O1142.22 (18)C8—C9—N1—C11.6 (3)
C14—C12—C13—O19.6 (2)C10—C9—N1—C1178.27 (16)
O2—C12—C13—C878.44 (16)C2—C1—N1—C9178.21 (17)
C11—C12—C13—C837.9 (2)C6—C1—N1—C91.7 (3)
C14—C12—C13—C8170.53 (14)C16—C15—N2—O2179.92 (13)
O2—C12—C14—C1521.30 (15)C14—C15—N2—O21.2 (2)
C11—C12—C14—C15141.81 (15)C15—N2—O2—C1214.07 (18)
C13—C12—C14—C1589.36 (15)C11—C12—O2—N2149.12 (13)
O2—C12—C14—C2399.62 (15)C13—C12—O2—N293.29 (14)
C11—C12—C14—C2320.9 (2)C14—C12—O2—N222.63 (16)
C13—C12—C14—C23149.71 (14)C20—C19—O3—C227.0 (3)
C23—C14—C15—N2109.13 (17)C18—C19—O3—C22172.97 (19)
C12—C14—C15—N214.64 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22B···O1i0.962.543.351 (2)142
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC28H21ClN2O3
Mr468.92
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.1626 (4), 16.2747 (6), 12.1960 (4)
β (°) 107.704 (2)
V3)2299.78 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.932, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
21438, 4288, 3335
Rint0.022
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.108, 1.04
No. of reflections4288
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.32

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22B···O1i0.962.543.351 (2)141.7
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT, Chennai, India, for the data collection.

References

First citationAsthana, P., Rastogi, S., Ghose, S. & Das, S. R. (1991). Indian J. Chem. Sect. B. 30, 893–900.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDi Giorgio, C., De Meo, M., Chiron, J., Delmas, F., Nikoyan, A., Severine, J., Dumeneil, G., Timon-David, P. & Galy, J.-P. (2005). Bioorg. Med. Chem. 13, 5560–5568.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridharan, M., Rajendra Prasad, K. J. & Zeller, M. (2009). Acta Cryst. E65, o1064.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTalacki, R., Carrell, H. L. & Glusker, J. P. (1974). Acta Cryst. B30, 1044–1047.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationTrzybiński, D., Zadykowicz, B., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o828–o829.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds