metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,4,6-tri­methyl­pyridinium) tetra­bromidozincate

aDepartment of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan, bDepartment of Chemistry, The University of Jordan, Amman 11942, Jordan, and cFaculty of Science and IT, Al-Balqa'a Applied University, Salt, Jordan
*Correspondence e-mail: bfali@aabu.edu.jo

(Received 26 September 2012; accepted 28 September 2012; online 3 October 2012)

In the title compound, (C8H12N)2[ZnBr4], the coordination geometry of the anion is approximately tetra­hedral. The Zn—Br bond lengths range from 2.3901 (19) to 2.449 (2) Å and the Br—Zn—Br angles range from 107.09 (8) to 112.48 (8)°. In the crystal, each [ZnBr4]2− anion is connected to four cations through two N—H⋯Br and two C—H⋯Br hydrogen bonds, forming two-dimensional ⋯(cation)2⋯anion⋯(cation2)⋯ sheets parallel to the bc plane. Within each sheet, the anions are arranged in stacks with no significant inter-anion Br⋯Br inter­actions [the shortest being > 4.3 Å], while the cations are in chains, with weak ππ stacking inter­actions [centroid–centroid distance = 3.991 Å] between cations inter­acting with the same anion.

Related literature

For background information, see: Ali & Al-Far (2009[Ali, B. F. & Al-Far, R. (2009). Acta Cryst. E65, m581-m582.]). For bond lengths and angles in the [ZnBr4]2− anion, see: Ali & Al-Far (2009[Ali, B. F. & Al-Far, R. (2009). Acta Cryst. E65, m581-m582.]); Peng & Li (2011[Peng, C. & Li, Y. (2011). Acta Cryst. E67, m1056.]). For another structure containing the 2,4,6-trimethyl­pyridinium cation, see: Abbasi et al. (2011[Abbasi, M. A., Nazir, K., Akkurt, M., Aziz-ur-Rehman, Khan, I. U. & Mustafa, G. (2011). Acta Cryst. E67, o2375.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H12N)2[ZnBr4]

  • Mr = 629.36

  • Triclinic, P 1

  • a = 7.3627 (8) Å

  • b = 9.0310 (8) Å

  • c = 9.1854 (9) Å

  • α = 101.741 (8)°

  • β = 110.778 (10)°

  • γ = 96.321 (8)°

  • V = 547.89 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 8.41 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.20 mm

Data collection
  • Oxford Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.413, Tmax = 1.000

  • 3637 measured reflections

  • 2730 independent reflections

  • 2399 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.140

  • S = 1.02

  • 2730 reflections

  • 214 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.77 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 797 Friedel pairs

  • Flack parameter: −0.02 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1i 0.86 2.79 3.647 (13) 175
N2—H2A⋯Br3 0.86 2.57 3.433 (10) 179
C2—H2B⋯Br3 0.93 2.79 3.685 (11) 162
C10—H10A⋯Br4ii 0.93 2.86 3.776 (13) 168
Symmetry codes: (i) x-1, y-1, z-1; (ii) x, y+1, z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In connection with ongoing studies of the structural aspects of halo-metal anion salts (Ali & Al-Far, 2009), we herein report the crystal structure of the title compound. The asymmetric unit contains an anion and two independent cations (Fig. 1). The geometry of ZnBr42- anion is approximately tetrahedral. In the anion, the bond distances and angles fall in the range of those reported previously (Peng & Li, 2011). In the cations, the bond lengths and angles are within normal ranges compared to the salt containing 2,4,6-trimethylpyridinium cation (Abbasi et al., 2011). The packing of the structure can be regarded as alternating stacks of anions and chains of cations. The anion stacks are parallel to the cation chains, with no significant Br···Br interactions [shortest Br···Br interactions being greater than 4.3 Å]. The anions and cations are interacting significantly through two N—H···Br—Zn and two pyC—H···Br—Zn hydrogen bonding (Table 1). These interactions link anions and cations into two-dimensional sheets of etc ···(cation)2···anion···(cation)2···etc parallel to bc plane (Fig. 2).

Related literature top

For background information, see: Ali & Al-Far (2009). For bond lengths and angles in the [ZnBr4]2- anion, see: Ali & Al-Far (2009); Peng & Li (2011). For another structure containing the 2,4,6-trimethylpyridinium cation, see: Abbasi et al. (2011).

Experimental top

To a hot solution of 2,4,6-trimethylpyridine (0.122 g, 1 mmol) and 1 ml of 60% HBr dissolved in 95% EtOH (15 ml), a hot solution of ZnCl2 (0.136 g, 1 mmol) dissolved in 95% EtOH (10 ml) was added. The resulting mixture was then treated with liquid Br2 (2 ml) and refluxed for 2 h. The resulting mixture was left undisturbed to evaporate at room temperature whereupon colorless plate crystals were formed after two days.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with N—H = 0.86 Å and C—H = 0.93 and 0.96 Å, for aryl and methyl H atoms, respectively. The Uiso(H) were allowed at 1.5Ueq(C methyl) or 1.2Ueq(N/C nonmethyl). An absolute structure was determined by using 797 Friedel pairs.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound showing alternating stacks of anions and cations. C/N—H···Br interactions are shown as dashed lines.
Bis(2,4,6-trimethylpyridinium) tetrabromidozincate top
Crystal data top
(C8H12N)2[ZnBr4]Z = 1
Mr = 629.36F(000) = 304
Triclinic, P1Dx = 1.908 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3627 (8) ÅCell parameters from 1674 reflections
b = 9.0310 (8) Åθ = 2.9–29.1°
c = 9.1854 (9) ŵ = 8.41 mm1
α = 101.741 (8)°T = 293 K
β = 110.778 (10)°Chunk, colourless
γ = 96.321 (8)°0.35 × 0.25 × 0.2 mm
V = 547.89 (9) Å3
Data collection top
Oxford Xcalibur Eos
diffractometer
2730 independent reflections
Radiation source: Enhance (Mo) X-ray Source2399 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 16.0534 pixels mm-1θmax = 25.0°, θmin = 2.9°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 107
Tmin = 0.413, Tmax = 1.000l = 1010
3637 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0933P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2730 reflectionsΔρmax = 0.75 e Å3
214 parametersΔρmin = 0.77 e Å3
3 restraintsAbsolute structure: Flack (1983), 797 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
(C8H12N)2[ZnBr4]γ = 96.321 (8)°
Mr = 629.36V = 547.89 (9) Å3
Triclinic, P1Z = 1
a = 7.3627 (8) ÅMo Kα radiation
b = 9.0310 (8) ŵ = 8.41 mm1
c = 9.1854 (9) ÅT = 293 K
α = 101.741 (8)°0.35 × 0.25 × 0.2 mm
β = 110.778 (10)°
Data collection top
Oxford Xcalibur Eos
diffractometer
2730 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2399 reflections with I > 2σ(I)
Tmin = 0.413, Tmax = 1.000Rint = 0.021
3637 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.140Δρmax = 0.75 e Å3
S = 1.02Δρmin = 0.77 e Å3
2730 reflectionsAbsolute structure: Flack (1983), 797 Friedel pairs
214 parametersAbsolute structure parameter: 0.02 (2)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.9260 (2)0.39402 (17)0.49611 (17)0.0439 (3)
Br40.9532 (2)0.27784 (15)0.24750 (16)0.0629 (4)
Br30.59389 (18)0.45209 (17)0.43497 (16)0.0576 (4)
Br20.9650 (2)0.22617 (15)0.67076 (16)0.0609 (4)
Br11.16750 (19)0.63427 (15)0.62829 (16)0.0617 (4)
N20.6828 (15)0.6293 (11)0.8284 (12)0.046 (2)
H2A0.65880.58390.72980.055*
C100.7852 (19)0.8528 (16)1.0355 (17)0.053 (3)
H10A0.82710.95951.07190.063*
C130.6550 (18)0.5429 (14)0.9227 (15)0.047 (3)
C90.7459 (19)0.7828 (15)0.8773 (18)0.052 (3)
C120.7024 (18)0.6132 (16)1.0853 (15)0.053 (3)
H12A0.69170.55381.15460.064*
C110.7654 (18)0.7721 (14)1.1426 (16)0.045 (3)
N10.2717 (18)0.1748 (16)0.0480 (15)0.065 (3)
H1A0.25180.21480.05110.078*
C40.2765 (16)0.1995 (15)0.3001 (15)0.046 (3)
H4A0.26190.26190.36580.056*
C20.3449 (17)0.0429 (13)0.2619 (15)0.045 (3)
H2B0.37820.14970.30190.054*
C50.2520 (17)0.2679 (15)0.1393 (14)0.045 (3)
C30.3220 (18)0.0405 (15)0.3603 (15)0.047 (3)
C10.323 (2)0.0168 (17)0.1074 (18)0.058 (3)
C150.804 (2)0.848 (2)1.3147 (17)0.067 (4)
H15A0.91210.81301.38480.100*
H15B0.68760.82211.33560.100*
H15C0.83810.95801.33380.100*
C70.350 (2)0.038 (2)0.5270 (19)0.062 (4)
H7A0.48140.09960.58230.093*
H7B0.33210.03780.58300.093*
H7C0.25470.10300.52390.093*
C140.774 (3)0.864 (2)0.758 (2)0.083 (5)
H14A0.86540.82050.71710.125*
H14B0.82530.97150.80910.125*
H14C0.64870.85040.67000.125*
C80.202 (2)0.4391 (14)0.0714 (18)0.057 (3)
H8A0.17900.46310.04110.086*
H8B0.08410.48060.08420.086*
H8C0.30940.48350.12770.086*
C160.585 (3)0.3720 (16)0.851 (2)0.064 (4)
H16A0.62200.34140.76040.097*
H16B0.44320.34670.81500.097*
H16C0.64440.31880.93030.097*
C60.353 (4)0.090 (3)0.010 (3)0.120 (9)
H6A0.25490.15310.00430.179*
H6B0.34050.03040.09410.179*
H6C0.48280.15400.06410.179*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0515 (8)0.0429 (7)0.0372 (7)0.0055 (6)0.0178 (6)0.0109 (5)
Br40.0890 (11)0.0564 (9)0.0506 (8)0.0112 (7)0.0382 (8)0.0105 (6)
Br30.0525 (8)0.0733 (9)0.0461 (7)0.0155 (7)0.0172 (6)0.0155 (6)
Br20.0802 (10)0.0601 (8)0.0521 (8)0.0160 (7)0.0292 (7)0.0279 (7)
Br10.0650 (9)0.0521 (8)0.0573 (9)0.0076 (6)0.0207 (7)0.0073 (6)
N20.055 (6)0.047 (6)0.029 (5)0.006 (5)0.012 (4)0.012 (4)
C100.042 (6)0.048 (7)0.061 (9)0.009 (5)0.013 (6)0.009 (6)
C130.047 (7)0.037 (6)0.053 (7)0.002 (5)0.019 (6)0.007 (6)
C90.051 (7)0.047 (8)0.059 (8)0.007 (6)0.020 (6)0.018 (6)
C120.049 (7)0.070 (9)0.041 (7)0.016 (7)0.017 (6)0.015 (6)
C110.036 (6)0.051 (8)0.047 (7)0.009 (5)0.016 (5)0.008 (6)
N10.059 (7)0.094 (10)0.044 (6)0.012 (6)0.020 (5)0.021 (6)
C40.041 (6)0.062 (8)0.040 (6)0.017 (6)0.016 (5)0.018 (6)
C20.047 (7)0.029 (6)0.051 (8)0.003 (5)0.011 (6)0.010 (5)
C50.035 (6)0.069 (8)0.030 (6)0.011 (5)0.010 (5)0.013 (6)
C30.045 (7)0.058 (8)0.037 (6)0.015 (6)0.014 (5)0.007 (6)
C10.051 (8)0.064 (9)0.058 (9)0.007 (6)0.014 (6)0.031 (7)
C150.064 (9)0.082 (11)0.037 (8)0.007 (8)0.018 (7)0.014 (7)
C70.066 (10)0.074 (10)0.048 (8)0.020 (8)0.027 (7)0.009 (7)
C140.109 (14)0.086 (12)0.073 (12)0.029 (10)0.035 (10)0.057 (10)
C80.070 (9)0.037 (7)0.061 (9)0.006 (6)0.024 (7)0.009 (6)
C160.087 (11)0.049 (8)0.065 (10)0.000 (7)0.039 (8)0.021 (7)
C60.120 (17)0.15 (2)0.119 (19)0.027 (15)0.047 (15)0.101 (17)
Geometric parameters (Å, º) top
Zn1—Br22.3901 (19)C2—C11.356 (19)
Zn1—Br42.398 (2)C2—H2B0.9300
Zn1—Br12.4270 (19)C5—C81.494 (18)
Zn1—Br32.449 (2)C3—C71.480 (19)
N2—C131.329 (16)C1—C61.49 (2)
N2—C91.340 (16)C15—H15A0.9600
N2—H2A0.8600C15—H15B0.9600
C10—C91.37 (2)C15—H15C0.9600
C10—C111.38 (2)C7—H7A0.9600
C10—H10A0.9300C7—H7B0.9600
C13—C121.397 (18)C7—H7C0.9600
C13—C161.501 (18)C14—H14A0.9600
C9—C141.50 (2)C14—H14B0.9600
C12—C111.387 (18)C14—H14C0.9600
C12—H12A0.9300C8—H8A0.9600
C11—C151.498 (18)C8—H8B0.9600
N1—C51.333 (18)C8—H8C0.9600
N1—C11.377 (19)C16—H16A0.9600
N1—H1A0.8600C16—H16B0.9600
C4—C31.385 (17)C16—H16C0.9600
C4—C51.418 (17)C6—H6A0.9600
C4—H4A0.9300C6—H6B0.9600
C2—C31.331 (18)C6—H6C0.9600
Br2—Zn1—Br4112.48 (8)C2—C1—N1117.5 (12)
Br2—Zn1—Br1110.92 (8)C2—C1—C6119.3 (16)
Br4—Zn1—Br1109.19 (7)N1—C1—C6123.1 (16)
Br2—Zn1—Br3107.09 (8)C11—C15—H15A109.5
Br4—Zn1—Br3108.55 (8)C11—C15—H15B109.5
Br1—Zn1—Br3108.49 (8)H15A—C15—H15B109.5
C13—N2—C9124.2 (11)C11—C15—H15C109.5
C13—N2—H2A117.9H15A—C15—H15C109.5
C9—N2—H2A117.9H15B—C15—H15C109.5
C9—C10—C11122.8 (12)C3—C7—H7A109.5
C9—C10—H10A118.6C3—C7—H7B109.5
C11—C10—H10A118.6H7A—C7—H7B109.5
N2—C13—C12118.9 (11)C3—C7—H7C109.5
N2—C13—C16118.0 (11)H7A—C7—H7C109.5
C12—C13—C16123.1 (12)H7B—C7—H7C109.5
N2—C9—C10116.9 (12)C9—C14—H14A109.5
N2—C9—C14117.8 (13)C9—C14—H14B109.5
C10—C9—C14125.2 (14)H14A—C14—H14B109.5
C11—C12—C13119.6 (12)C9—C14—H14C109.5
C11—C12—H12A120.2H14A—C14—H14C109.5
C13—C12—H12A120.2H14B—C14—H14C109.5
C10—C11—C12117.4 (12)C5—C8—H8A109.5
C10—C11—C15123.1 (12)C5—C8—H8B109.5
C12—C11—C15119.5 (13)H8A—C8—H8B109.5
C5—N1—C1122.0 (12)C5—C8—H8C109.5
C5—N1—H1A119.0H8A—C8—H8C109.5
C1—N1—H1A119.0H8B—C8—H8C109.5
C3—C4—C5120.7 (12)C13—C16—H16A109.5
C3—C4—H4A119.7C13—C16—H16B109.5
C5—C4—H4A119.7H16A—C16—H16B109.5
C3—C2—C1124.6 (12)C13—C16—H16C109.5
C3—C2—H2B117.7H16A—C16—H16C109.5
C1—C2—H2B117.7H16B—C16—H16C109.5
N1—C5—C4118.0 (12)C1—C6—H6A109.5
N1—C5—C8120.4 (12)C1—C6—H6B109.5
C4—C5—C8121.6 (12)H6A—C6—H6B109.5
C2—C3—C4117.0 (11)C1—C6—H6C109.5
C2—C3—C7119.7 (12)H6A—C6—H6C109.5
C4—C3—C7123.3 (13)H6B—C6—H6C109.5
C9—N2—C13—C123.1 (18)C1—N1—C5—C42.9 (19)
C9—N2—C13—C16179.7 (13)C1—N1—C5—C8178.3 (13)
C13—N2—C9—C100.6 (19)C3—C4—C5—N10.8 (17)
C13—N2—C9—C14178.8 (13)C3—C4—C5—C8179.6 (12)
C11—C10—C9—N21 (2)C1—C2—C3—C41.3 (19)
C11—C10—C9—C14177.0 (14)C1—C2—C3—C7179.9 (13)
N2—C13—C12—C113.9 (18)C5—C4—C3—C21.3 (17)
C16—C13—C12—C11179.7 (13)C5—C4—C3—C7179.8 (12)
C9—C10—C11—C120.1 (19)C3—C2—C1—N11 (2)
C9—C10—C11—C15178.8 (13)C3—C2—C1—C6180.0 (15)
C13—C12—C11—C102.4 (17)C5—N1—C1—C23 (2)
C13—C12—C11—C15176.3 (12)C5—N1—C1—C6177.8 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.862.793.647 (13)175
N2—H2A···Br30.862.573.433 (10)179
C2—H2B···Br30.932.793.685 (11)162
C10—H10A···Br4ii0.932.863.776 (13)168
Symmetry codes: (i) x1, y1, z1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C8H12N)2[ZnBr4]
Mr629.36
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.3627 (8), 9.0310 (8), 9.1854 (9)
α, β, γ (°)101.741 (8), 110.778 (10), 96.321 (8)
V3)547.89 (9)
Z1
Radiation typeMo Kα
µ (mm1)8.41
Crystal size (mm)0.35 × 0.25 × 0.2
Data collection
DiffractometerOxford Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.413, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3637, 2730, 2399
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.140, 1.02
No. of reflections2730
No. of parameters214
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.77
Absolute structureFlack (1983), 797 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.862.793.647 (13)175.4
N2—H2A···Br30.862.573.433 (10)178.7
C2—H2B···Br30.932.793.685 (11)162.2
C10—H10A···Br4ii0.932.863.776 (13)167.7
Symmetry codes: (i) x1, y1, z1; (ii) x, y+1, z+1.
 

Acknowledgements

This structure was determined at the Hamdi Mango Center for Scientific Research at the University of Jordan, Amman. RA-F is grateful for financial support from Al-Balqa'a Applied University (Salt, Jordan).

References

First citationAbbasi, M. A., Nazir, K., Akkurt, M., Aziz-ur-Rehman, Khan, I. U. & Mustafa, G. (2011). Acta Cryst. E67, o2375.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAli, B. F. & Al-Far, R. (2009). Acta Cryst. E65, m581–m582.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPeng, C. & Li, Y. (2011). Acta Cryst. E67, m1056.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds