organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Benzotriazol-1-yl)-2-bromo­ethanone

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, bCenter of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, cDepartment of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt, and dDepartment of Chemistry, Government College University, Faisalabad 38040, Pakistan
*Correspondence e-mail: mnachemist@hotmail.com, hafizshafique@hotmail.com

(Received 9 October 2012; accepted 14 October 2012; online 20 October 2012)

In the title compound C8H6BrN3O, the benzotriazole ring is essentially planar (r.m.s. deviation = 0.0034 Å) and the bromo­acetyl unit is twisted at a dihedral angle of 15.24 (16)° with respect to it. In the crystal, pairs of C—H⋯O hydrogen bondings result in the formation of inversion dimers, forming R22(12) rings, which are connected by further C—H⋯O inter­actions into chains extending along the b-axis direction.

Related literature

For the biological activity of the title compound, see: Nakagawa et al. (1973[Nakagawa, Y., Ichihara, S., Niki, T., Suzuki, A., Shimosato, K. & Ogata, K. (1973). Jpn Patent JP48054066A.]). For the crystal structure of a closely related compound, see: Selvarathy Grace et al. (2012[Selvarathy Grace, P., Jebas, S. R., Ravindran Durai Nayagam, B. & Schollmeyer, D. (2012). Acta Cryst. E68, o1132.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6BrN3O

  • Mr = 240.07

  • Monoclinic, P 21 /n

  • a = 12.4815 (4) Å

  • b = 4.7207 (1) Å

  • c = 15.4780 (5) Å

  • β = 103.468 (3)°

  • V = 886.91 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 6.02 mm−1

  • T = 296 K

  • 0.28 × 0.11 × 0.05 mm

Data collection
  • Agilent SuperNova Dual (Cu at zero) Atlas, CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.284, Tmax = 0.753

  • 4362 measured reflections

  • 1833 independent reflections

  • 1507 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.141

  • S = 1.07

  • 1833 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.50 3.266 (3) 139
C8—H8B⋯O1ii 0.97 2.47 3.413 (4) 163
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]).

Supporting information


Comment top

The title compound shows antitumor activity mediated by inhibition of ascites sarcoma 180 in mice (Nakagawa et al., 1973). Herein we report the crystal structure of the title compound.

The molecule of the title compound (Fig. 1) excluding Br1 atom is planer with r.m.s. deviation = 0.0367 Å; the Br1 atom is displaced from this plane by 0.489 (2) Å . The benzotriazole ring (C1–C6/N1–N3) is essentially planar with r.m.s.d = 0.0034 Å. The bromoacetyl moiety (Br1/C8/C7/O1) is twisted at a dihedral angle of 15.24 (16)° with respect to the benzotriazole ring. The structure of the title compound is stabilized by intermolecular hydrogen bonding interactions C5—H5···O1 resulting in dimers about inversion centers forming twelve membered ring motif R22(12) (Bernstein et al., 1995). The dimers are further connected through C8—H8B···O1 hydrogen bonding interactions resulting in chains of molecules extended along the b axis (Table 1 and Fig. 2).

Related literature top

For the biological activity of the title compound, see: Nakagawa et al. (1973). For crystal structure of a closely related compound, see: Selvarathy Grace et al. (2012). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A solution of thionyl chloride (0.4 mL, 5.5 mmol) and benzotriazole (1.79 g., 15 mmol) in methylene chloride (30 mL) was stirred at 293 K for 30 minutes. Bromoacetic acid (0.7 g., 5 mmol) was then added and the heterogeneous mixture was stirred for 2 hr. The solid was filtered and methylene chloride (50 mL) was added to the filtrate. The organic layer was extracted with saturated 4N HCl (3x, 15 mL), brine (2x, 5 mL) and dried over anhydrous Na2SO4. The crystals of the title compound suitable for X-ray crystallographic analysis were obtained by slow evaporation of methylene chloride (1.0 g, 83% yield).

Refinement top

The H-atoms were positioned with idealized geometry with C—H = 0.93 and 0.97 Å for aromatic and methylene H-atoms, respectively, and were refined as riding with Uiso(H) = 1.2Ueq(C).

Three reflections (5 2 15), (6 2 14) & (4 2 16) have been omitted in final refinement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and X-SEED (Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—-H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen- bonding were omitted for clarity.
1-(Benzotriazol-1-yl)-2-bromoethanone top
Crystal data top
C8H6BrN3OF(000) = 472
Mr = 240.07Dx = 1.798 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 2295 reflections
a = 12.4815 (4) Åθ = 3.6–76.0°
b = 4.7207 (1) ŵ = 6.02 mm1
c = 15.4780 (5) ÅT = 296 K
β = 103.468 (3)°Plate, colorless
V = 886.91 (4) Å30.28 × 0.11 × 0.05 mm
Z = 4
Data collection top
Agilent SuperNova Dual (Cu at zero) Atlas, CCD
diffractometer
1833 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1507 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
ω scansθmax = 76.2°, θmin = 4.1°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 1512
Tmin = 0.284, Tmax = 0.753k = 55
4362 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0838P)2 + 0.0945P]
where P = (Fo2 + 2Fc2)/3
1833 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C8H6BrN3OV = 886.91 (4) Å3
Mr = 240.07Z = 4
Monoclinic, P21/nCu Kα radiation
a = 12.4815 (4) ŵ = 6.02 mm1
b = 4.7207 (1) ÅT = 296 K
c = 15.4780 (5) Å0.28 × 0.11 × 0.05 mm
β = 103.468 (3)°
Data collection top
Agilent SuperNova Dual (Cu at zero) Atlas, CCD
diffractometer
1833 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1507 reflections with I > 2σ(I)
Tmin = 0.284, Tmax = 0.753Rint = 0.034
4362 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.07Δρmax = 0.43 e Å3
1833 reflectionsΔρmin = 0.51 e Å3
118 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.84802 (3)0.99732 (9)0.01180 (3)0.0947 (2)
O10.63342 (16)0.7775 (4)0.02369 (12)0.0717 (5)
N10.62518 (17)1.0238 (4)0.14622 (14)0.0512 (5)
N20.67298 (17)1.2209 (5)0.20998 (14)0.0603 (5)
N30.61989 (19)1.2185 (5)0.27134 (14)0.0673 (6)
C10.5348 (2)1.0227 (5)0.25097 (18)0.0582 (6)
C20.4553 (3)0.9458 (7)0.2965 (2)0.0774 (8)
H20.45281.02940.35040.093*
C30.3809 (2)0.7419 (8)0.2586 (2)0.0800 (9)
H30.32690.68620.28750.096*
C40.3843 (2)0.6154 (7)0.1776 (2)0.0743 (7)
H40.33200.47870.15400.089*
C50.4624 (2)0.6864 (5)0.13167 (17)0.0608 (6)
H50.46470.60120.07800.073*
C60.53792 (18)0.8945 (5)0.17058 (14)0.0509 (5)
C70.6721 (2)0.9628 (5)0.07435 (16)0.0518 (5)
C80.7682 (2)1.1462 (6)0.06834 (17)0.0614 (6)
H8A0.81721.16330.12680.074*
H8B0.74191.33430.04890.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0844 (3)0.1209 (5)0.0895 (4)0.00843 (18)0.0419 (2)0.00526 (18)
O10.0855 (12)0.0685 (12)0.0622 (10)0.0108 (9)0.0193 (9)0.0213 (9)
N10.0541 (10)0.0483 (10)0.0484 (10)0.0024 (7)0.0065 (8)0.0066 (7)
N20.0655 (11)0.0525 (11)0.0594 (11)0.0003 (9)0.0075 (9)0.0128 (9)
N30.0805 (13)0.0640 (13)0.0562 (11)0.0053 (11)0.0136 (10)0.0146 (9)
C10.0637 (14)0.0573 (14)0.0522 (13)0.0132 (10)0.0110 (11)0.0013 (9)
C20.087 (2)0.0816 (19)0.0684 (18)0.0213 (16)0.0281 (15)0.0064 (14)
C30.0694 (15)0.087 (2)0.088 (2)0.0074 (15)0.0282 (15)0.0204 (17)
C40.0606 (14)0.0732 (18)0.0864 (19)0.0028 (13)0.0115 (13)0.0139 (16)
C50.0592 (12)0.0586 (14)0.0600 (13)0.0012 (11)0.0045 (10)0.0011 (11)
C60.0535 (11)0.0480 (11)0.0486 (11)0.0085 (9)0.0066 (8)0.0032 (9)
C70.0564 (12)0.0495 (12)0.0477 (12)0.0042 (9)0.0080 (9)0.0026 (8)
C80.0640 (13)0.0619 (15)0.0586 (13)0.0006 (11)0.0150 (10)0.0016 (11)
Geometric parameters (Å, º) top
Br1—C81.897 (3)C2—H20.9300
O1—C71.199 (3)C3—C41.398 (5)
N1—C61.376 (3)C3—H30.9300
N1—N21.386 (3)C4—C51.374 (4)
N1—C71.402 (3)C4—H40.9300
N2—N31.279 (3)C5—C61.397 (3)
N3—C11.388 (4)C5—H50.9300
C1—C21.391 (5)C7—C81.500 (4)
C1—C61.392 (3)C8—H8A0.9700
C2—C31.371 (5)C8—H8B0.9700
C6—N1—N2109.9 (2)C3—C4—H4118.9
C6—N1—C7129.1 (2)C4—C5—C6115.9 (3)
N2—N1—C7120.8 (2)C4—C5—H5122.0
N3—N2—N1108.2 (2)C6—C5—H5122.0
N2—N3—C1109.8 (2)N1—C6—C1104.0 (2)
N3—C1—C2131.0 (3)N1—C6—C5133.8 (2)
N3—C1—C6108.2 (2)C1—C6—C5122.3 (2)
C2—C1—C6120.7 (3)O1—C7—N1119.3 (2)
C3—C2—C1117.3 (3)O1—C7—C8125.9 (2)
C3—C2—H2121.4N1—C7—C8114.8 (2)
C1—C2—H2121.4C7—C8—Br1112.09 (18)
C2—C3—C4121.6 (3)C7—C8—H8A109.2
C2—C3—H3119.2Br1—C8—H8A109.2
C4—C3—H3119.2C7—C8—H8B109.2
C5—C4—C3122.2 (3)Br1—C8—H8B109.2
C5—C4—H4118.9H8A—C8—H8B107.9
C6—N1—N2—N30.0 (3)C7—N1—C6—C56.4 (4)
C7—N1—N2—N3174.6 (2)N3—C1—C6—N10.6 (3)
N1—N2—N3—C10.4 (3)C2—C1—C6—N1179.7 (2)
N2—N3—C1—C2179.7 (3)N3—C1—C6—C5179.9 (2)
N2—N3—C1—C60.6 (3)C2—C1—C6—C50.4 (4)
N3—C1—C2—C3180.0 (3)C4—C5—C6—N1179.1 (2)
C6—C1—C2—C30.4 (4)C4—C5—C6—C10.0 (3)
C1—C2—C3—C40.0 (5)C6—N1—C7—O11.4 (4)
C2—C3—C4—C50.4 (5)N2—N1—C7—O1174.8 (2)
C3—C4—C5—C60.4 (4)C6—N1—C7—C8179.3 (2)
N2—N1—C6—C10.4 (2)N2—N1—C7—C85.9 (3)
C7—N1—C6—C1174.4 (2)O1—C7—C8—Br114.7 (3)
N2—N1—C6—C5179.6 (2)N1—C7—C8—Br1166.13 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.503.266 (3)139
C8—H8B···O1ii0.972.473.413 (4)163
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H6BrN3O
Mr240.07
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)12.4815 (4), 4.7207 (1), 15.4780 (5)
β (°) 103.468 (3)
V3)886.91 (4)
Z4
Radiation typeCu Kα
µ (mm1)6.02
Crystal size (mm)0.28 × 0.11 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual (Cu at zero) Atlas, CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.284, 0.753
No. of measured, independent and
observed [I > 2σ(I)] reflections
4362, 1833, 1507
Rint0.034
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.141, 1.07
No. of reflections1833
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.51

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 1999) and X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.503.266 (3)139.2
C8—H8B···O1ii0.972.473.413 (4)163.2
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
 

Acknowledgements

The authors would like to thank the Deanship of Scientific Research at King Abdulaziz University for the support of this research via the Research Group Track of grant No. (3-102/428).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSelvarathy Grace, P., Jebas, S. R., Ravindran Durai Nayagam, B. & Schollmeyer, D. (2012). Acta Cryst. E68, o1132.  CSD CrossRef IUCr Journals Google Scholar
First citationNakagawa, Y., Ichihara, S., Niki, T., Suzuki, A., Shimosato, K. & Ogata, K. (1973). Jpn Patent JP48054066A.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds