organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,6-Di­bromo­phenanthrene

aDepartment of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
*Correspondence e-mail: kitamura@eng.u-hyogo.ac.jp

(Received 28 September 2012; accepted 4 October 2012; online 10 October 2012)

The phenanthrene ring in the title compound, C14H8Br2, is approximately planar [maximum deviation = 0.039 (3) Å]. In contrast, the two bromo atoms are displaced slightly from the phenanthrene plane [maximum deviation = 0.1637 (3) Å]. In the crystal, the mol­ecules adopt a herringbone-like arrangement and form face-to-face slipped ππ stacking inter­actions along the b axis, with an inter­planar distance of 3.544 (3) Å and slippage of 1.81 Å. The crystal studied was a racemic twin with a minor twin fraction of 0.390 (10).

Related literature

For the synthesis of the title compound using the improved photocyclization of 4,4′-dibromo-trans-stilbene, see: Talele et al. (2009[Talele, H. R., Gohil, M. J. & Bedekar, A. V. (2009). Bull. Chem. Soc. Jpn, 82, 1182-1186.]). For the original synthesis and applications of the title compound, see: Nakamura et al. (1996[Nakamura, Y., Tsuihiji, T., Mita, T., Minowa, T., Tobita, S., Shizuka, H. & Nishimura, J. (1996). J. Am. Chem. Soc. 118, 1006-1012.]).

[Scheme 1]

Experimental

Crystal data
  • C14H8Br2

  • Mr = 336.02

  • Monoclinic, P 21

  • a = 6.8697 (5) Å

  • b = 3.9809 (2) Å

  • c = 20.5002 (11) Å

  • β = 93.813 (2)°

  • V = 559.39 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.21 mm−1

  • T = 223 K

  • 0.62 × 0.08 × 0.03 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.196, Tmax = 0.793

  • 5372 measured reflections

  • 2267 independent reflections

  • 2084 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.037

  • S = 1.00

  • 2267 reflections

  • 146 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.46 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 831 Friedel pairs

  • Flack parameter: 0.390 (10)

Data collection: RAPID-AUTO (Rigaku, 1999[Rigaku (1999). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Phenanthrene is a polycylic aromatic hydrocarbon (PAH) as well as a potential building block for higher-order π-extended PAHs. The title compound, 3,6-dibromophenanthrene, was first prepared by Nakamura et al. (1996). The bromo functional group on the aromatic ring is a suitable substrate for a variety of cross-coupling reaction. Recently, the improved synthesis was reported by Talele et al. (2009). However, the X-ray structure was not reported to date. We report herein the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. The crystal was a racemic twin with a minor twin fraction of 0.390 (10). The molecule is approximately planar except for Br1 and Br2 [the maximum deviation is 0.1637 (3) Å for Br2]. The bonds lengths and angles are in good agreement with the standard values. As shown in Fig. 2, the crystal structure is characterized by a combination of a columnar stacking and a herrinbone-like arrangement. Along the b axis, there are two columns per unit cell in which the molecules form face-to-face slipped π-stacks with an interplanar distance of 3.543 Å. The interplanar tilt angle between the phenanthrene rings in two adjacent columns is 54.21°.

Related literature top

For the synthesis of the title compound using the improved photocyclization of 4,4'-dibromo-trans-stilbene, see: Talele et al. (2009). For the original synthesis and applications of the title compound, see: Nakamura et al. (1996).

Experimental top

The title compound was prepared from 4,4'-dibromo-trans-stilbene according to the literature procedure of Talele et al. (2009). The title compound was dissolved in hot hexane. After cooling of the solution to room temperature, single crystals suitable for X-ray analysis were obtained.

Refinement top

All the aromatic H atoms were positioned geometrically and refined using a riding model with C—H = 0.94 Å and Uiso(H) = 1.2Ueq(C). In final refinement cycles, racemic twinning was taken into account with a TWIN and a BASF instruction of program SHELXL97 (Sheldrick, 2008), giving a minor twin fraction of 0.390 (10).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1999); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atomic numbering and 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of (I). Hydrogen atoms are omitted for clarity.
3,6-Dibromophenanthrene top
Crystal data top
C14H8Br2F(000) = 324
Mr = 336.02Dx = 1.995 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4191 reflections
a = 6.8697 (5) Åθ = 3.1–27.5°
b = 3.9809 (2) ŵ = 7.21 mm1
c = 20.5002 (11) ÅT = 223 K
β = 93.813 (2)°Needle, colorless
V = 559.39 (6) Å30.62 × 0.08 × 0.03 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2267 independent reflections
Radiation source: fine-focus sealed x-ray tube2084 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 88
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 54
Tmin = 0.196, Tmax = 0.793l = 2626
5372 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.037 w = 1/[σ2(Fo2) + (0.0175P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
2267 reflectionsΔρmax = 0.38 e Å3
146 parametersΔρmin = 0.46 e Å3
1 restraintAbsolute structure: Flack (1983), 831 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.390 (10)
Crystal data top
C14H8Br2V = 559.39 (6) Å3
Mr = 336.02Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.8697 (5) ŵ = 7.21 mm1
b = 3.9809 (2) ÅT = 223 K
c = 20.5002 (11) Å0.62 × 0.08 × 0.03 mm
β = 93.813 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2267 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2084 reflections with I > 2σ(I)
Tmin = 0.196, Tmax = 0.793Rint = 0.022
5372 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.037Δρmax = 0.38 e Å3
S = 1.00Δρmin = 0.46 e Å3
2267 reflectionsAbsolute structure: Flack (1983), 831 Friedel pairs
146 parametersAbsolute structure parameter: 0.390 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1808 (4)0.2590 (6)0.88179 (11)0.0315 (7)
H10.29470.31580.90230.038*
C20.0292 (4)0.1043 (7)0.91762 (12)0.0313 (6)
H20.03890.05370.96210.038*
C30.1384 (4)0.0249 (7)0.88644 (11)0.0270 (6)
C40.1569 (4)0.0897 (6)0.82192 (11)0.0249 (6)
H40.27240.03180.80250.03*
C50.0013 (4)0.2449 (6)0.78399 (11)0.0243 (6)
C60.0120 (3)0.3192 (8)0.71506 (10)0.0236 (5)
C70.1731 (4)0.2289 (6)0.67943 (11)0.0241 (6)
H70.28060.11840.70050.029*
C80.1728 (4)0.3020 (7)0.61427 (11)0.0259 (5)
C90.0176 (4)0.4707 (7)0.58081 (12)0.0301 (6)
H90.02150.5220.53620.036*
C100.1392 (4)0.5590 (7)0.61443 (12)0.0309 (6)
H100.24380.67290.59240.037*
C110.1487 (4)0.4842 (7)0.68117 (11)0.0260 (5)
C120.3169 (4)0.5686 (7)0.71513 (13)0.0325 (7)
H120.42230.67740.69250.039*
C130.3277 (4)0.4956 (8)0.77907 (13)0.0330 (6)
H130.44080.55190.80010.04*
C140.1683 (4)0.3330 (8)0.81549 (11)0.0270 (5)
Br10.35013 (4)0.17379 (7)0.937295 (11)0.03280 (8)
Br20.38478 (4)0.16231 (7)0.565973 (12)0.03364 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0312 (15)0.0336 (18)0.0310 (12)0.0016 (11)0.0128 (11)0.0049 (11)
C20.0392 (16)0.0317 (16)0.0237 (11)0.0038 (12)0.0084 (11)0.0023 (12)
C30.0291 (15)0.0259 (12)0.0256 (12)0.0017 (11)0.0000 (11)0.0018 (11)
C40.0248 (14)0.0252 (15)0.0251 (11)0.0008 (10)0.0054 (10)0.0017 (10)
C50.0248 (13)0.0239 (15)0.0245 (11)0.0031 (9)0.0029 (10)0.0029 (10)
C60.0229 (12)0.0214 (10)0.0262 (11)0.0041 (13)0.0002 (9)0.0010 (13)
C70.0222 (12)0.0258 (15)0.0241 (11)0.0026 (9)0.0001 (9)0.0001 (10)
C80.0265 (13)0.0248 (12)0.0268 (11)0.0043 (12)0.0047 (10)0.0039 (12)
C90.0363 (16)0.0281 (13)0.0255 (12)0.0004 (13)0.0007 (11)0.0012 (12)
C100.0296 (16)0.0299 (14)0.0324 (13)0.0032 (11)0.0053 (11)0.0001 (12)
C110.0247 (14)0.0228 (12)0.0301 (12)0.0018 (11)0.0009 (10)0.0032 (12)
C120.0223 (15)0.0348 (16)0.0396 (14)0.0064 (11)0.0028 (12)0.0063 (13)
C130.0237 (15)0.0344 (14)0.0416 (14)0.0030 (13)0.0071 (11)0.0080 (14)
C140.0255 (13)0.0244 (11)0.0315 (11)0.0029 (14)0.0040 (10)0.0012 (14)
Br10.03496 (16)0.03660 (14)0.02647 (12)0.00097 (14)0.00083 (10)0.00312 (13)
Br20.03388 (15)0.04005 (15)0.02791 (12)0.00275 (14)0.00893 (10)0.00034 (13)
Geometric parameters (Å, º) top
C1—C21.379 (4)C7—C81.367 (3)
C1—C141.399 (3)C7—H70.94
C1—H10.94C8—C91.400 (3)
C2—C31.390 (4)C8—Br21.898 (2)
C2—H20.94C9—C101.363 (4)
C3—C41.362 (3)C9—H90.94
C3—Br11.904 (2)C10—C111.406 (3)
C4—C51.420 (3)C10—H100.94
C4—H40.94C11—C121.428 (4)
C5—C141.413 (3)C12—C131.350 (4)
C5—C61.450 (3)C12—H120.94
C6—C71.412 (3)C13—C141.437 (4)
C6—C111.426 (3)C13—H130.94
C2—C1—C14121.2 (2)C7—C8—C9122.2 (2)
C2—C1—H1119.4C7—C8—Br2119.72 (19)
C14—C1—H1119.4C9—C8—Br2118.07 (17)
C1—C2—C3118.4 (2)C10—C9—C8118.5 (2)
C1—C2—H2120.8C10—C9—H9120.7
C3—C2—H2120.8C8—C9—H9120.7
C4—C3—C2122.5 (2)C9—C10—C11121.8 (2)
C4—C3—Br1119.6 (2)C9—C10—H10119.1
C2—C3—Br1117.94 (17)C11—C10—H10119.1
C3—C4—C5119.9 (2)C6—C11—C10119.1 (2)
C3—C4—H4120C6—C11—C12119.8 (2)
C5—C4—H4120C10—C11—C12121.1 (2)
C14—C5—C4118.1 (2)C13—C12—C11121.4 (2)
C14—C5—C6119.4 (2)C13—C12—H12119.3
C4—C5—C6122.5 (2)C11—C12—H12119.3
C7—C6—C11118.3 (2)C12—C13—C14120.8 (3)
C7—C6—C5123.0 (2)C12—C13—H13119.6
C11—C6—C5118.7 (2)C14—C13—H13119.6
C8—C7—C6120.0 (2)C5—C14—C1119.8 (2)
C8—C7—H7120C5—C14—C13119.8 (2)
C6—C7—H7120C1—C14—C13120.4 (2)
C14—C1—C2—C30.5 (4)C7—C6—C11—C101.7 (4)
C1—C2—C3—C41.0 (4)C5—C6—C11—C10179.6 (2)
C1—C2—C3—Br1177.77 (19)C7—C6—C11—C12177.8 (2)
C2—C3—C4—C50.2 (4)C5—C6—C11—C120.8 (4)
Br1—C3—C4—C5178.56 (17)C9—C10—C11—C61.6 (4)
C3—C4—C5—C141.1 (3)C9—C10—C11—C12177.9 (3)
C3—C4—C5—C6179.8 (2)C6—C11—C12—C130.0 (4)
C14—C5—C6—C7177.7 (3)C10—C11—C12—C13179.5 (3)
C4—C5—C6—C73.2 (4)C11—C12—C13—C140.7 (5)
C14—C5—C6—C110.9 (4)C4—C5—C14—C11.6 (4)
C4—C5—C6—C11178.2 (2)C6—C5—C14—C1179.3 (3)
C11—C6—C7—C80.5 (4)C4—C5—C14—C13179.0 (2)
C5—C6—C7—C8179.0 (2)C6—C5—C14—C130.2 (4)
C6—C7—C8—C91.0 (4)C2—C1—C14—C50.8 (4)
C6—C7—C8—Br2177.3 (2)C2—C1—C14—C13179.7 (3)
C7—C8—C9—C101.1 (4)C12—C13—C14—C50.6 (5)
Br2—C8—C9—C10177.1 (2)C12—C13—C14—C1179.9 (3)
C8—C9—C10—C110.2 (4)

Experimental details

Crystal data
Chemical formulaC14H8Br2
Mr336.02
Crystal system, space groupMonoclinic, P21
Temperature (K)223
a, b, c (Å)6.8697 (5), 3.9809 (2), 20.5002 (11)
β (°) 93.813 (2)
V3)559.39 (6)
Z2
Radiation typeMo Kα
µ (mm1)7.21
Crystal size (mm)0.62 × 0.08 × 0.03
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.196, 0.793
No. of measured, independent and
observed [I > 2σ(I)] reflections
5372, 2267, 2084
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.037, 1.00
No. of reflections2267
No. of parameters146
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.46
Absolute structureFlack (1983), 831 Friedel pairs
Absolute structure parameter0.390 (10)

Computer programs: RAPID-AUTO (Rigaku, 1999), PROCESS-AUTO (Rigaku, 1998), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research from the JSPS and MEXT.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationNakamura, Y., Tsuihiji, T., Mita, T., Minowa, T., Tobita, S., Shizuka, H. & Nishimura, J. (1996). J. Am. Chem. Soc. 118, 1006–1012.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1999). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTalele, H. R., Gohil, M. J. & Bedekar, A. V. (2009). Bull. Chem. Soc. Jpn, 82, 1182–1186.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds