metal-organic compounds
catena-Poly[[tetraaqua-μ-aqua-bis(μ4-pyrimidine-2-carboxylato)tetralithium] dichloride]
aInstitute of Nuclear Chemistry and Technology, ul.Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl
The 4(C5H3N2O2)2(H2O)5]Cl2, contains two LiI cations, one with a distorted trigonal–bipyramidal and the other with a distorted tetrahedral coordination geometry. Two symmetry-related asymmetric units constitute a building block of the structure, in which both ligand carboxylate O atoms are bidentate and bridge the metal ions, forming a divalent cation. Charge balance is maintained by two chloride anions. The building blocks, bridged by LiI cations, form cationic ribbons with chloride anions in the space between them. The ribbons propagate in [010] and are held together by a network of weak O—H⋯O hydrogen bonds which operate in the space between adjacent ribbons.
of the title compound, [LiRelated literature
For the structure of a Li complex with pyrimidine-2-carboxylate and nitrate ligands, see: Starosta & Leciejewicz (2011). The structure of a LiI complex with pyrimidine-4-carboxylate and water ligands was reported recently by Starosta & Leciejewicz (2012).
Experimental
Crystal data
|
Data collection
Refinement
|
|
Data collection: KM-4 Software (Kuma, 1996); cell KM-4 Software; data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812041955/qm2084sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812041955/qm2084Isup2.hkl
1 mmol of methyl pyrimidine-2-carboxylate and ca2 mmol s of lithium hydroxide dissolved in 50 ml of hot, doubly distilled water were boiled under reflux with stirring for twenty hours. After evaporation to dryness at room temperature the polycrystalline material was dissolved in 50 ml of water. The solution was titrated with 1 N HCl until the pH reached 6.0 and then stirred for 3 h at ca 320 K. Left to crystallize at room temperature, colourless single-crystal blocks deposited after a week. They were washed with cold methanol and dried in the air.
Hydrogen atoms belonging to water molecules were located in a difference map and refined isotropically, while three H atoms attached to pyrimidine C atoms were located at calculated positions and treated as riding on the parent atoms with C—H=0.93 Å and Uiso(H)=1.2Ueq(C).
Data collection: KM-4 Software (Kuma, 1996); cell
KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. A fragment of a cationic ribbon of the title compound with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry code: i -x, y, -z + 1/2; ii x, -y + 2, z - 1/2; iii x, -y + 2, z + 1/2; iv -x, -y + 2, z + 1. | |
Fig. 2. The alignment of cationic ribbons and chloride anions in the structure of the title compound viewed along the unit cell b direction. |
[Li4(C5H3N2O2)2(H2O)5]Cl2 | F(000) = 888 |
Mr = 434.93 | Dx = 1.501 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 25 reflections |
a = 22.084 (4) Å | θ = 6–15° |
b = 8.0773 (16) Å | µ = 0.39 mm−1 |
c = 10.814 (2) Å | T = 293 K |
β = 94.08 (3)° | Block, colourless |
V = 1924.1 (7) Å3 | 0.37 × 0.24 × 0.18 mm |
Z = 4 |
Kuma KM4 four-circle diffractometer | 1781 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.029 |
Graphite monochromator | θmax = 30.1°, θmin = 1.9° |
profile data from ω/2θ scans | h = −31→31 |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) | k = −11→0 |
Tmin = 0.917, Tmax = 0.935 | l = 0→15 |
2964 measured reflections | 3 standard reflections every 200 reflections |
2819 independent reflections | intensity decay: 2.3% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.147 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0879P)2 + 1.2478P] where P = (Fo2 + 2Fc2)/3 |
2819 reflections | (Δ/σ)max = 0.004 |
152 parameters | Δρmax = 0.51 e Å−3 |
4 restraints | Δρmin = −0.36 e Å−3 |
[Li4(C5H3N2O2)2(H2O)5]Cl2 | V = 1924.1 (7) Å3 |
Mr = 434.93 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 22.084 (4) Å | µ = 0.39 mm−1 |
b = 8.0773 (16) Å | T = 293 K |
c = 10.814 (2) Å | 0.37 × 0.24 × 0.18 mm |
β = 94.08 (3)° |
Kuma KM4 four-circle diffractometer | 1781 reflections with I > 2σ(I) |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) | Rint = 0.029 |
Tmin = 0.917, Tmax = 0.935 | 3 standard reflections every 200 reflections |
2964 measured reflections | intensity decay: 2.3% |
2819 independent reflections |
R[F2 > 2σ(F2)] = 0.044 | 4 restraints |
wR(F2) = 0.147 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.51 e Å−3 |
2819 reflections | Δρmin = −0.36 e Å−3 |
152 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.08301 (6) | 0.92604 (19) | 0.37614 (11) | 0.0321 (3) | |
O2 | 0.08768 (6) | 0.96441 (19) | 0.17202 (11) | 0.0319 (3) | |
N3 | 0.20103 (7) | 1.0854 (2) | 0.20733 (13) | 0.0277 (3) | |
N1 | 0.19897 (7) | 1.0170 (2) | 0.42115 (13) | 0.0277 (3) | |
C6 | 0.25599 (9) | 1.0720 (3) | 0.43984 (17) | 0.0326 (4) | |
H6 | 0.2752 | 1.0657 | 0.5191 | 0.039* | |
C2 | 0.17410 (7) | 1.0274 (2) | 0.30494 (14) | 0.0232 (3) | |
C4 | 0.25768 (9) | 1.1411 (3) | 0.22901 (18) | 0.0332 (4) | |
H4 | 0.2778 | 1.1836 | 0.1634 | 0.040* | |
C5 | 0.28729 (9) | 1.1378 (3) | 0.3457 (2) | 0.0353 (4) | |
H5 | 0.3266 | 1.1781 | 0.3601 | 0.042* | |
Li1 | 0.13426 (15) | 0.9162 (5) | 0.5437 (3) | 0.0323 (7) | |
O3 | 0.11355 (9) | 0.6795 (2) | 0.56747 (16) | 0.0469 (4) | |
C7 | 0.10916 (8) | 0.9673 (2) | 0.28238 (14) | 0.0239 (3) | |
O21 | 0.0000 | 0.6868 (4) | 0.2500 | 0.0527 (6) | |
Li2 | −0.00573 (17) | 0.8841 (8) | 0.3807 (4) | 0.0590 (13) | |
Cl1 | 0.10829 (3) | 0.57231 (8) | 0.84542 (5) | 0.04391 (17) | |
H211 | −0.0286 (13) | 0.622 (4) | 0.230 (3) | 0.064 (10)* | |
H32 | 0.1130 (18) | 0.599 (5) | 0.515 (4) | 0.086 (12)* | |
H31 | 0.1170 (14) | 0.627 (4) | 0.634 (3) | 0.065 (9)* | |
O22 | −0.00669 (8) | 0.8066 (3) | 0.54795 (18) | 0.0618 (6) | |
H221 | −0.0386 (10) | 0.754 (4) | 0.570 (3) | 0.075 (10)* | |
H222 | 0.0166 (14) | 0.717 (4) | 0.555 (3) | 0.120 (17)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0302 (6) | 0.0478 (8) | 0.0185 (6) | −0.0032 (6) | 0.0031 (5) | 0.0039 (5) |
O2 | 0.0313 (6) | 0.0472 (8) | 0.0164 (5) | −0.0051 (6) | −0.0040 (4) | 0.0036 (5) |
N3 | 0.0316 (7) | 0.0335 (8) | 0.0181 (6) | −0.0022 (6) | 0.0028 (5) | 0.0009 (6) |
N1 | 0.0312 (7) | 0.0352 (8) | 0.0165 (6) | −0.0006 (6) | −0.0012 (5) | 0.0012 (6) |
C6 | 0.0330 (8) | 0.0390 (10) | 0.0245 (8) | −0.0006 (8) | −0.0062 (6) | −0.0016 (7) |
C2 | 0.0291 (8) | 0.0258 (8) | 0.0148 (6) | 0.0024 (6) | 0.0012 (5) | 0.0000 (6) |
C4 | 0.0354 (9) | 0.0361 (10) | 0.0289 (9) | −0.0051 (8) | 0.0075 (7) | 0.0008 (7) |
C5 | 0.0289 (9) | 0.0392 (10) | 0.0373 (10) | −0.0036 (8) | −0.0006 (7) | −0.0014 (8) |
Li1 | 0.0376 (16) | 0.0420 (18) | 0.0173 (13) | 0.0004 (14) | 0.0020 (11) | −0.0006 (12) |
O3 | 0.0754 (12) | 0.0358 (8) | 0.0277 (7) | 0.0017 (8) | −0.0090 (7) | 0.0005 (7) |
C7 | 0.0258 (7) | 0.0285 (8) | 0.0171 (7) | 0.0017 (6) | 0.0006 (5) | 0.0009 (6) |
O21 | 0.0337 (11) | 0.0675 (17) | 0.0551 (15) | 0.000 | −0.0086 (10) | 0.000 |
Li2 | 0.0301 (17) | 0.116 (4) | 0.0305 (18) | 0.009 (2) | 0.0030 (14) | 0.018 (2) |
Cl1 | 0.0420 (3) | 0.0553 (3) | 0.0345 (3) | −0.0001 (2) | 0.00346 (19) | 0.0087 (2) |
O22 | 0.0349 (8) | 0.0967 (16) | 0.0550 (11) | 0.0101 (10) | 0.0123 (7) | 0.0338 (11) |
O1—C7 | 1.247 (2) | Li1—N3iii | 2.221 (4) |
Li1—O1 | 2.069 (3) | Li1—Li2iv | 3.414 (6) |
O2—C7 | 1.2528 (19) | O3—H32 | 0.86 (4) |
O2—Li2i | 1.968 (4) | O3—H31 | 0.83 (4) |
O2—Li1ii | 2.029 (4) | Li2—O21 | 2.140 (6) |
N3—C2 | 1.333 (2) | O21—Li2i | 2.140 (6) |
N3—C4 | 1.335 (2) | O21—H211 | 0.84 (3) |
N3—Li1ii | 2.221 (4) | Li2—O22 | 1.915 (4) |
N1—C6 | 1.337 (2) | Li2—O2i | 1.968 (4) |
N1—C2 | 1.338 (2) | Li2—O1 | 1.993 (4) |
Li1—N1 | 2.175 (4) | Li2—O22iv | 2.623 (7) |
C6—C5 | 1.377 (3) | Li2—Li2i | 2.856 (8) |
C6—H6 | 0.9300 | Li2—Li2iv | 3.183 (11) |
C2—C7 | 1.517 (2) | Li2—Li1iv | 3.414 (6) |
C4—C5 | 1.379 (3) | Li2—H222 | 2.343 (18) |
C4—H4 | 0.9300 | O22—Li2iv | 2.623 (7) |
C5—H5 | 0.9300 | O22—H221 | 0.868 (18) |
Li1—O3 | 1.987 (4) | O22—H222 | 0.891 (18) |
Li1—O2iii | 2.029 (4) | ||
C7—O1—Li2 | 125.36 (16) | Li2—O21—Li2i | 83.7 (3) |
C7—O1—Li1 | 117.79 (15) | Li2—O21—H211 | 124 (2) |
Li2—O1—Li1 | 116.70 (16) | Li2i—O21—H211 | 112 (2) |
C7—O2—Li2i | 124.07 (17) | O22—Li2—O2i | 108.02 (19) |
C7—O2—Li1ii | 117.82 (15) | O22—Li2—O1 | 98.98 (19) |
Li2i—O2—Li1ii | 117.32 (18) | O2i—Li2—O1 | 145.3 (3) |
C2—N3—C4 | 116.42 (15) | O22—Li2—O21 | 112.7 (3) |
C2—N3—Li1ii | 108.69 (14) | O2i—Li2—O21 | 98.6 (2) |
C4—N3—Li1ii | 134.65 (15) | O1—Li2—O21 | 90.32 (18) |
C6—N1—C2 | 116.14 (15) | O22—Li2—O22iv | 92.4 (2) |
C6—N1—Li1 | 133.22 (14) | O2i—Li2—O22iv | 81.1 (2) |
C2—N1—Li1 | 110.62 (14) | O1—Li2—O22iv | 76.29 (19) |
N1—C6—C5 | 122.22 (17) | O21—Li2—O22iv | 153.3 (2) |
N1—C6—H6 | 118.9 | O22—Li2—Li2i | 160.4 (2) |
C5—C6—H6 | 118.9 | O2i—Li2—Li2i | 81.81 (19) |
N3—C2—N1 | 126.11 (16) | O1—Li2—Li2i | 79.56 (18) |
N3—C2—C7 | 117.06 (14) | O21—Li2—Li2i | 48.13 (14) |
N1—C2—C7 | 116.82 (15) | O22iv—Li2—Li2i | 106.04 (10) |
N3—C4—C5 | 122.10 (17) | O22—Li2—Li2iv | 55.42 (15) |
N3—C4—H4 | 119.0 | O2i—Li2—Li2iv | 93.4 (2) |
C5—C4—H4 | 119.0 | O1—Li2—Li2iv | 84.2 (2) |
C6—C5—C4 | 116.98 (18) | O21—Li2—Li2iv | 165.6 (3) |
C6—C5—H5 | 121.5 | O22iv—Li2—Li2iv | 36.95 (15) |
C4—C5—H5 | 121.5 | Li2i—Li2—Li2iv | 142.6 (2) |
O3—Li1—O2iii | 103.68 (16) | O22—Li2—Li1iv | 82.13 (16) |
O3—Li1—O1 | 91.92 (15) | O2i—Li2—Li1iv | 31.87 (10) |
O2iii—Li1—O1 | 107.96 (16) | O1—Li2—Li1iv | 139.6 (3) |
O3—Li1—N1 | 127.32 (18) | O21—Li2—Li1iv | 126.81 (17) |
O2iii—Li1—N1 | 128.74 (19) | O22iv—Li2—Li1iv | 63.32 (13) |
O1—Li1—N1 | 78.11 (12) | Li2i—Li2—Li1iv | 111.75 (17) |
O3—Li1—N3iii | 92.14 (15) | Li2iv—Li2—Li1iv | 63.10 (15) |
O2iii—Li1—N3iii | 78.36 (12) | O22—Li2—H222 | 21.2 (6) |
O1—Li1—N3iii | 171.42 (18) | O2i—Li2—H222 | 124.0 (7) |
N1—Li1—N3iii | 93.42 (14) | O1—Li2—H222 | 88.1 (8) |
O3—Li1—Li2iv | 102.75 (17) | O21—Li2—H222 | 94.7 (9) |
O2iii—Li1—Li2iv | 30.81 (10) | O22iv—Li2—H222 | 107.6 (10) |
O1—Li1—Li2iv | 77.24 (13) | Li2i—Li2—H222 | 140.1 (7) |
N1—Li1—Li2iv | 124.23 (17) | Li2iv—Li2—H222 | 71.8 (9) |
N3iii—Li1—Li2iv | 109.16 (14) | Li1iv—Li2—H222 | 102.2 (6) |
Li1—O3—H32 | 129 (3) | Li2—O22—Li2iv | 87.6 (2) |
Li1—O3—H31 | 126 (2) | Li2—O22—H221 | 119 (2) |
H32—O3—H31 | 101 (3) | Li2iv—O22—H221 | 117 (2) |
O1—C7—O2 | 127.12 (16) | Li2—O22—H222 | 107.6 (17) |
O1—C7—C2 | 116.22 (14) | Li2iv—O22—H222 | 135 (3) |
O2—C7—C2 | 116.65 (15) | H221—O22—H222 | 93 (2) |
Symmetry codes: (i) −x, y, −z+1/2; (ii) x, −y+2, z−1/2; (iii) x, −y+2, z+1/2; (iv) −x, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O22—H222···O3 | 0.89 (2) | 2.16 (3) | 2.841 (3) | 133 (3) |
O22—H221···Cl1v | 0.87 (2) | 2.36 (2) | 3.212 (2) | 167 (3) |
O3—H31···Cl1 | 0.83 (4) | 2.35 (4) | 3.1381 (19) | 158 (3) |
O3—H32···Cl1vi | 0.86 (4) | 2.29 (4) | 3.1429 (19) | 168 (4) |
O21—H211···Cl1vii | 0.84 (3) | 2.45 (3) | 3.288 (2) | 175 (3) |
Symmetry codes: (v) −x, y, −z+3/2; (vi) x, −y+1, z−1/2; (vii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Li4(C5H3N2O2)2(H2O)5]Cl2 |
Mr | 434.93 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 22.084 (4), 8.0773 (16), 10.814 (2) |
β (°) | 94.08 (3) |
V (Å3) | 1924.1 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.39 |
Crystal size (mm) | 0.37 × 0.24 × 0.18 |
Data collection | |
Diffractometer | Kuma KM4 four-circle diffractometer |
Absorption correction | Analytical (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.917, 0.935 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2964, 2819, 1781 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.705 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.147, 1.02 |
No. of reflections | 2819 |
No. of parameters | 152 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.51, −0.36 |
Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Li1—O1 | 2.069 (3) | Li2—O21 | 2.140 (6) |
Li1—N1 | 2.175 (4) | Li2—O22 | 1.915 (4) |
Li1—O3 | 1.987 (4) | Li2—O2ii | 1.968 (4) |
Li1—O2i | 2.029 (4) | Li2—O1 | 1.993 (4) |
Li1—N3i | 2.221 (4) |
Symmetry codes: (i) x, −y+2, z+1/2; (ii) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O22—H222···O3 | 0.891 (18) | 2.16 (3) | 2.841 (3) | 133 (3) |
O22—H221···Cl1iii | 0.868 (18) | 2.36 (2) | 3.212 (2) | 167 (3) |
O3—H31···Cl1 | 0.83 (4) | 2.35 (4) | 3.1381 (19) | 158 (3) |
O3—H32···Cl1iv | 0.86 (4) | 2.29 (4) | 3.1429 (19) | 168 (4) |
O21—H211···Cl1v | 0.84 (3) | 2.45 (3) | 3.288 (2) | 175 (3) |
Symmetry codes: (iii) −x, y, −z+3/2; (iv) x, −y+1, z−1/2; (v) −x, −y+1, −z+1. |
References
Kuma (1996). KM-4 Software. Kuma Diffraction Ltd. Wrocław, Poland. Google Scholar
Kuma (2001). DATAPROC. Kuma Diffraction Ltd. Wrocław, Poland. Google Scholar
Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd., Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2011). Acta Cryst. E67, m818. Web of Science CSD CrossRef IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2012). Acta Cryst. E68, m1065–m1066. CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The asymmetric cell of the title compound contains two symmetry independent LiI ions, one deprotonated pyramidine-2-carboxylatato ligand molecule, three symmetry independent water molecules which are coordinated to metal ions and one chloride anion. The latter maintains charge balance in the cell. Two symmetry related cells form a molecular moiety which can be visualized as a building unit of the structure (Fig. 1).The ligand bridges Li ions in a µ4 mode using both its carboxylate O atoms which act as bidentate. Ligand bonding groups N1,O1 and N3,O2 chelate Li1 and Liii ions; the O1 and O2 atoms are also bonded to Li2 and Li2i ions, respectively. Since the Li1 and Li1ii ions are also coordinated by bonding groups from adjacent symmetry related ligands, a –Li1ii—O2—O1—Li1—O2iiiO1iii—Li1iii– bridging pathway is formed. Apart from two N,O bonding groups, Li1 coordination is completed by an aqua O3 atom. On the other hand, pairs of adjacent symmetry related Li2 and Li2i ions are bridged by an aqua O21 atom while the other coordinated to them aqua O22 and O22i atoms are not bridging. Symmetry code: i -x, y, -z + 1/2; ii x, -y + 2, z - 1/2; iii x, -y + 2, z + 1/2. Adjacent moieties linked along the Li1 bridging pathway form a cationic ribbon propagating in the unit cell b direction (Fig. 2). Chloride anions are located in the space between adjacent ribbons. Fig. 1 shows, that a ribbon can be visualized as built of centro-symmetric molecular clusters in which Li ions form a tetrameric entities additionally connected by Li2—O21—Li2i bridges. The Li1 ion exhibits a distorted trigonal bipyramidal coordination environment in which O1, O3 and N3iii atoms form an equatorial plane with a Li1 ion 0.0619 (2) Å out of it; N1 and O2iii atoms are at apical positions. The coordination of the Li2 ion is strongly distorted tetrahedral. The Li—O and Li—N bond distances (Table 1) are close to those reported in the structures of a Li complex with the title and nitrate ligands (Starosta & Leciejewicz, 2011) and pyrimidine-4-carboxylate and water ligands (Starosta & Leciejewicz, 2012). The pyrimidine ring is planar with r.m.s. of 0.0071 (1) Å; the C7/O1/O2 makes with it a dihedral angle of 5.8 (1)°. Weak hydrogen bonds in which water O atoms are as donors and chloride anions act as acceptors operate between adjacent ribbons (Table 2).