metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[hexa­aqua­(μ3-2,2′-bi­pyridine-4,4′,6,6′-tetra­carboxyl­ato-κ6O4:N,O6,O6′,N′:O4′)dinickel(II)] dihydrate]

aState Key Lab. Base of Novel Functional Materials and Preparation Science, Institute of Solid Materials Chemistry, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: leikeweipublic@hotmail.com

(Received 11 April 2012; accepted 23 October 2012; online 31 October 2012)

In the title complex, {[Ni2(C14H4N2O8)(H2O)6]·2H2O}n, the two NiII atoms are located in different special positions (one on a twofold rotation axis and the second on a centre of symmetry) and have different distorted octa­hedral environments (one by two N atoms from a bipyridine unit, two O atoms from two water mol­ecules and two O atoms from two carboxyl­ate groups, and the second by four O atoms from four water mol­ecules and two O atoms from two carboxyl­ate groups). Thus, the environments of the NiII atoms may be denoted as NiN2O4 and NiO6. In the crystal, there exists an extensive network of classical O—H⋯O hydrogen bonds.

Related literature

For the synthesis of title compound, see: Al-Harbi (2011[Al-Harbi, T. (2011). J. Alloys Compd, 509, 387-390.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C14H4N2O8)(H2O)6]·2H2O

  • Mr = 589.70

  • Monoclinic, P 2/n

  • a = 7.3588 (8) Å

  • b = 11.8463 (13) Å

  • c = 11.9942 (13) Å

  • β = 99.184 (1)°

  • V = 1032.19 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.91 mm−1

  • T = 296 K

  • 0.28 × 0.24 × 0.19 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.591, Tmax = 0.695

  • 8794 measured reflections

  • 2365 independent reflections

  • 2248 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.062

  • S = 1.06

  • 2365 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O6 0.85 (2) 1.95 (2) 2.7821 (16) 169 (2)
O3—H3A⋯O8i 0.82 1.90 2.7189 (16) 174
O4—H4A⋯O6ii 0.82 1.95 2.7697 (17) 178
O4—H4B⋯O7iii 0.78 (3) 2.03 (3) 2.7997 (16) 172 (3)
O5—H5A⋯O2iv 0.82 1.90 2.6891 (16) 162
O5—H5B⋯O7v 0.78 (3) 1.96 (3) 2.7395 (17) 172 (3)
O6—H6A⋯O2v 0.79 (3) 2.03 (3) 2.8096 (17) 170 (2)
Symmetry codes: (i) x, y+1, z; (ii) [x+{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}]; (iii) -x, -y+1, -z+2; (iv) [x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (v) [-x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The complex structure is shown in Fig. 1. In the title complex two Ni atoms are placed in two different special positions: Ni1 - on 2–fold axis and Ni2 - in centre of symmetry. These atoms have different environment: Ni1 is coordinated by two N atoms of dipyridine moiety, two O atoms from water molecules and two O atoms from two carboxylate moieties; Ni2 is coordinated only by six O atoms: four O from four water molecules and two O from two carboxylate moieties.

In the crystal structure there is the wide net of classical O—H···O type H–bonds (Table 1, Fig. 2), which stabilize crystal packing.

Related literature top

For the synthesis of title compound, see: Al-Harbi (2011).

Experimental top

A mixture of 6–(4,6–dicarboxypyridin–2–yl)pyridine–2,4–dicarboxylic acid (0.0332 g, 0.1 mmol), Ni(NO3)2.6H2O (0.0724 g, 0.3 mmol) and water (10 ml) was placed in a teflon–lined stainless steel vessel (25 ml) and heated at 443.15 K for 72 h, and then cooled to room temperature at a rate of 5/h (Al-Harbi, 2011). The resulting green single crystals were isolated by washing with DMF and dried in vacuo. Yield: 62.3%.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93%A; N—H = 0.86Å; O—H = 0.82Å) and Uiso(H) values weren taken to be equal to 1.2 Ueq(C, N) and 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex with the atom–numbering scheme. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. The three–dimensional structure of the title complex. The hydrogen bonds are indicated by dashed lines.
Poly[[hexaaqua(µ3-2,2'-bipyridine-4,4',6,6'-tetracarboxylato- κ6O4:N,O6,O6',N':O4') dinickel(II)] dihydrate] top
Crystal data top
[Ni2(C14H4N2O8)(H2O)6]·2H2OF(000) = 604
Mr = 589.70Dx = 1.897 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 8794 reflections
a = 7.3588 (8) Åθ = 1.7–27.5°
b = 11.8463 (13) ŵ = 1.91 mm1
c = 11.9942 (13) ÅT = 296 K
β = 99.184 (1)°Block, green
V = 1032.19 (19) Å30.28 × 0.24 × 0.19 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2365 independent reflections
Radiation source: fine–focus sealed tube2248 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 1.7°
ω scansh = 98
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1514
Tmin = 0.591, Tmax = 0.695l = 1515
8794 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0255P)2 + 0.5729P]
where P = (Fo2 + 2Fc2)/3
2365 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Ni2(C14H4N2O8)(H2O)6]·2H2OV = 1032.19 (19) Å3
Mr = 589.70Z = 2
Monoclinic, P2/nMo Kα radiation
a = 7.3588 (8) ŵ = 1.91 mm1
b = 11.8463 (13) ÅT = 296 K
c = 11.9942 (13) Å0.28 × 0.24 × 0.19 mm
β = 99.184 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2365 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2248 reflections with I > 2σ(I)
Tmin = 0.591, Tmax = 0.695Rint = 0.038
8794 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.40 e Å3
2365 reflectionsΔρmin = 0.42 e Å3
176 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.25000.36726 (2)0.75000.01154 (8)
Ni20.00001.00001.00000.01064 (8)
O10.10038 (16)0.87338 (9)0.89420 (9)0.0161 (2)
O30.10695 (15)1.06255 (9)0.86383 (9)0.0145 (2)
H3A0.08461.13020.85710.022*
O20.33996 (15)0.76758 (9)0.92552 (9)0.0162 (2)
O40.23852 (15)0.90408 (10)1.03816 (9)0.0162 (2)
H4A0.32180.94361.07090.024*
O80.04444 (15)0.28697 (9)0.82901 (9)0.0152 (2)
C10.1670 (2)0.60269 (12)0.77858 (12)0.0118 (3)
N10.10800 (18)0.49784 (10)0.79747 (10)0.0110 (2)
C60.1837 (2)0.78123 (12)0.89848 (11)0.0112 (3)
C40.1418 (2)0.56825 (12)0.88022 (11)0.0112 (3)
H4C0.24630.55520.91300.013*
C20.0741 (2)0.69601 (13)0.81220 (12)0.0123 (3)
H2A0.11530.76880.80110.015*
C50.0391 (2)0.47890 (12)0.84663 (12)0.0112 (3)
C30.0820 (2)0.67854 (12)0.86283 (11)0.0108 (3)
O70.21194 (15)0.32298 (9)0.90173 (9)0.0157 (2)
O50.07941 (17)0.35897 (11)0.59723 (10)0.0201 (2)
H5A0.12450.31690.55480.030*
C70.0751 (2)0.35285 (12)0.86043 (12)0.0120 (3)
O60.02584 (17)0.96743 (11)0.64958 (10)0.0191 (2)
H6A0.015 (3)0.909 (2)0.6259 (19)0.031 (6)*
H6B0.114 (4)0.976 (2)0.621 (2)0.037 (7)*
H5B0.025 (4)0.352 (2)0.603 (2)0.043 (7)*
H4B0.240 (4)0.842 (2)1.059 (2)0.047 (8)*
H3B0.069 (3)1.031 (2)0.801 (2)0.035 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01010 (14)0.00796 (14)0.01721 (14)0.0000.00415 (10)0.000
Ni20.01066 (15)0.00722 (14)0.01465 (14)0.00026 (9)0.00393 (10)0.00035 (9)
O10.0192 (6)0.0099 (5)0.0203 (5)0.0022 (4)0.0067 (4)0.0040 (4)
O30.0182 (6)0.0093 (5)0.0165 (5)0.0002 (4)0.0048 (4)0.0003 (4)
O20.0151 (5)0.0139 (5)0.0209 (5)0.0015 (4)0.0067 (4)0.0015 (4)
O40.0140 (5)0.0103 (5)0.0241 (5)0.0009 (4)0.0025 (4)0.0019 (4)
O80.0136 (5)0.0090 (5)0.0239 (5)0.0007 (4)0.0059 (4)0.0014 (4)
C10.0120 (7)0.0097 (7)0.0135 (6)0.0012 (5)0.0020 (5)0.0007 (5)
N10.0108 (6)0.0092 (6)0.0131 (6)0.0003 (4)0.0025 (5)0.0002 (4)
C60.0130 (7)0.0107 (7)0.0097 (6)0.0016 (5)0.0015 (5)0.0008 (5)
C40.0098 (7)0.0124 (7)0.0114 (6)0.0002 (5)0.0018 (5)0.0010 (5)
C20.0138 (7)0.0092 (7)0.0140 (6)0.0012 (5)0.0023 (5)0.0005 (5)
C50.0106 (7)0.0107 (7)0.0119 (6)0.0004 (5)0.0005 (5)0.0008 (5)
C30.0112 (7)0.0100 (7)0.0109 (6)0.0003 (5)0.0001 (5)0.0010 (5)
O70.0127 (5)0.0124 (5)0.0227 (5)0.0007 (4)0.0049 (4)0.0029 (4)
O50.0117 (6)0.0275 (7)0.0217 (6)0.0010 (5)0.0045 (4)0.0089 (5)
C70.0111 (7)0.0103 (7)0.0139 (6)0.0001 (5)0.0004 (5)0.0012 (5)
O60.0156 (6)0.0219 (6)0.0210 (6)0.0053 (5)0.0061 (5)0.0033 (5)
Geometric parameters (Å, º) top
Ni1—N1i1.9996 (12)O8—C71.2769 (18)
Ni1—N11.9996 (12)C1—N11.3468 (18)
Ni1—O52.0516 (12)C1—C21.393 (2)
Ni1—O5i2.0516 (12)C1—C1i1.493 (3)
Ni1—O82.1327 (11)N1—C51.3317 (19)
Ni1—O8i2.1327 (11)C6—C31.525 (2)
Ni2—O12.0265 (11)C4—C51.397 (2)
Ni2—O1ii2.0265 (11)C4—C31.405 (2)
Ni2—O3ii2.0607 (10)C4—H4C0.9300
Ni2—O32.0607 (10)C2—C31.398 (2)
Ni2—O4ii2.0796 (11)C2—H2A0.9300
Ni2—O42.0796 (11)C5—C71.530 (2)
O1—C61.2570 (18)O7—C71.2427 (19)
O3—H3A0.8200O5—H5A0.8200
O3—H3B0.85 (2)O5—H5B0.78 (3)
O2—C61.2541 (18)O6—H6A0.79 (3)
O4—H4A0.8200O6—H6B0.79 (3)
O4—H4B0.78 (3)
N1i—Ni1—N178.65 (7)H3A—O3—H3B108.0
N1i—Ni1—O593.20 (5)Ni2—O4—H4A109.5
N1—Ni1—O591.05 (5)Ni2—O4—H4B124 (2)
N1i—Ni1—O5i91.05 (5)H4A—O4—H4B114.4
N1—Ni1—O5i93.20 (5)C7—O8—Ni1115.42 (9)
O5—Ni1—O5i174.51 (7)N1—C1—C2119.82 (13)
N1i—Ni1—O8155.70 (5)N1—C1—C1i112.73 (8)
N1—Ni1—O877.21 (5)C2—C1—C1i127.45 (8)
O5—Ni1—O889.96 (5)C5—N1—C1122.43 (12)
O5i—Ni1—O887.60 (5)C5—N1—Ni1119.63 (10)
N1i—Ni1—O8i77.21 (5)C1—N1—Ni1117.94 (10)
N1—Ni1—O8i155.70 (5)O2—C6—O1126.58 (14)
O5—Ni1—O8i87.60 (5)O2—C6—C3118.75 (13)
O5i—Ni1—O8i89.96 (5)O1—C6—C3114.64 (13)
O8—Ni1—O8i127.03 (6)C5—C4—C3117.70 (13)
O1—Ni2—O1ii180.00 (4)C5—C4—H4C121.1
O1—Ni2—O3ii94.76 (4)C3—C4—H4C121.1
O1ii—Ni2—O3ii85.24 (4)C1—C2—C3118.91 (13)
O1—Ni2—O385.24 (4)C1—C2—H2A120.5
O1ii—Ni2—O394.76 (4)C3—C2—H2A120.5
O3ii—Ni2—O3180.000 (1)N1—C5—C4121.05 (13)
O1—Ni2—O4ii93.22 (5)N1—C5—C7112.28 (12)
O1ii—Ni2—O4ii86.78 (5)C4—C5—C7126.67 (13)
O3ii—Ni2—O4ii87.43 (4)C2—C3—C4120.06 (13)
O3—Ni2—O4ii92.57 (4)C2—C3—C6118.55 (13)
O1—Ni2—O486.78 (5)C4—C3—C6121.39 (13)
O1ii—Ni2—O493.22 (5)Ni1—O5—H5A109.5
O3ii—Ni2—O492.57 (4)Ni1—O5—H5B113.3 (19)
O3—Ni2—O487.43 (4)H5A—O5—H5B119.4
O4ii—Ni2—O4180.0O7—C7—O8125.72 (14)
C6—O1—Ni2138.47 (10)O7—C7—C5119.10 (13)
Ni2—O3—H3A109.5O8—C7—C5115.18 (13)
Ni2—O3—H3B115.5 (17)H6A—O6—H6B105 (2)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O60.85 (2)1.95 (2)2.7821 (16)169 (2)
O3—H3A···O8iii0.821.902.7189 (16)174
O4—H4A···O6iv0.821.952.7697 (17)178
O4—H4B···O7v0.78 (3)2.03 (3)2.7997 (16)172 (3)
O5—H5A···O2vi0.821.902.6891 (16)162
O5—H5B···O7vii0.78 (3)1.96 (3)2.7395 (17)172 (3)
O6—H6A···O2vii0.79 (3)2.03 (3)2.8096 (17)170 (2)
Symmetry codes: (iii) x, y+1, z; (iv) x+1/2, y+2, z+1/2; (v) x, y+1, z+2; (vi) x+1/2, y+1, z1/2; (vii) x1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Ni2(C14H4N2O8)(H2O)6]·2H2O
Mr589.70
Crystal system, space groupMonoclinic, P2/n
Temperature (K)296
a, b, c (Å)7.3588 (8), 11.8463 (13), 11.9942 (13)
β (°) 99.184 (1)
V3)1032.19 (19)
Z2
Radiation typeMo Kα
µ (mm1)1.91
Crystal size (mm)0.28 × 0.24 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.591, 0.695
No. of measured, independent and
observed [I > 2σ(I)] reflections
8794, 2365, 2248
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.062, 1.06
No. of reflections2365
No. of parameters176
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.42

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O60.85 (2)1.95 (2)2.7821 (16)169 (2)
O3—H3A···O8i0.821.902.7189 (16)174.4
O4—H4A···O6ii0.821.952.7697 (17)177.8
O4—H4B···O7iii0.78 (3)2.03 (3)2.7997 (16)172 (3)
O5—H5A···O2iv0.821.902.6891 (16)161.9
O5—H5B···O7v0.78 (3)1.96 (3)2.7395 (17)172 (3)
O6—H6A···O2v0.79 (3)2.03 (3)2.8096 (17)170 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+2, z+1/2; (iii) x, y+1, z+2; (iv) x+1/2, y+1, z1/2; (v) x1/2, y, z+3/2.
 

Acknowledgements

This project was sponsored by the K. C. Wong Magna Fund in Ningbo University, the Talent Fund of Ningbo Municipal Natural Science Foundation (No. 2010 A610187) and the Talent Fund of Ningbo University (No. Xkl09070).

References

First citationAl-Harbi, T. (2011). J. Alloys Compd, 509, 387–390.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds