organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Carb­­oxy­pyridinium maleate

aDepartment of Physics, Panimalar Engineering College, Chennai 600 123, India, bDepartment of Physics, Presidency College, Chennai 600 005, India, cDepartment of Physics, Aksheyaa College of Engineering, Kancheepuram 603 314, India, and dDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, mohan66@hotmail.com

(Received 1 September 2012; accepted 1 October 2012; online 6 October 2012)

In the title mol­ecular salt, C6H6NO2+.C4H3O4, the 2-carb­oxy­pyridinium cation is essentially planar with a maximum deviation of 0.003 (3) Å. In the crystal, adjacent cations and anions are linked by an extensive system of weak N—H⋯O, O—H⋯O and C—H⋯O inter­actions, forming a layer parallel to the ab plane.

Related literature

For details of pyridine and its derivatives, see: Banerjee & Murugavel (2004[Banerjee, S. & Murugavel, R. (2004). Cryst. Growth Des. 4, 545-552.]); Bis et al. (2006[Bis, J. A., McLaughlin, O. L., Vishweshwar, P. & Zaworotko, M. J. (2006). Cryst. Growth Des. 6, 2648-2650.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6NO2·C4H3O4

  • Mr = 239.18

  • Monoclinic, P 21 /c

  • a = 14.6498 (9) Å

  • b = 10.3976 (8) Å

  • c = 6.9067 (5) Å

  • β = 100.089 (3)°

  • V = 1035.78 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 295 K

  • 0.24 × 0.20 × 0.16 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.980

  • 9722 measured reflections

  • 2557 independent reflections

  • 2092 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.199

  • S = 1.10

  • 2557 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 2.28 2.639 (3) 105
O5—H5A⋯O4 0.82 1.73 2.540 (3) 168
N1—H1⋯O1i 0.86 2.02 2.725 (3) 139
O2—H2A⋯O3ii 0.82 1.71 2.463 (3) 152
C2—H2⋯O2iii 0.93 2.54 3.462 (4) 170
C3—H3⋯O6iv 0.93 2.59 3.221 (4) 125
C5—H5⋯O4v 0.93 2.40 3.251 (4) 152
C8—H8⋯O6vi 0.93 2.40 3.285 (4) 158
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+2, -y, -z+1; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyridine and its derivatives are some of the most frequently used synthons in supramolecular chemistry based on hydrogen bonds (Banerjee & Murugavel, 2004; Bis et al., 2006). We herewith report the molecular and crystal structures of the title compound, I, which belongs to this class of compounds.

The asymmetric unit of I, (Fig. 1), contains a 2–carboxypyridinium cation and a malonate anion. The bond lengths (Allen et al., 1987) and angles are within the normal range. The crystal structure exhibit weak intermolecular N—H···O, O—H···O and C—H···O (Table 1 & Fig. 2) interactions.

Related literature top

For details of pyridine and its derivatives, see: Banerjee & Murugavel (2004); Bis et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

A solution of picolinic acid (0.123 g, 1 mmol) in 10 ml ethanol was added with stirring to a solution of maleic acid (0.116 g, 1 mmol) in 10 ml of distilled water at 303 K. After some time, white precipitate was obtained, which was dissolved in ethanol and colourless block–shaped single crystals were obtained by slow evaporation of the ethanol solution.

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic H, N—H = 0.86Å and Uiso(H) = 1.2Ueq(N) for amine H and O—H = 0.82Å and Uiso(H) = 1.5Ueq(O) for hydroxyl H.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with atom labels. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as asmall spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of I, viewed down c axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
2-Carboxypyridinium maleate top
Crystal data top
C6H6NO2·C4H3O4F(000) = 496
Mr = 239.18Dx = 1.534 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4245 reflections
a = 14.6498 (9) Åθ = 2.4–28.3°
b = 10.3976 (8) ŵ = 0.13 mm1
c = 6.9067 (5) ÅT = 295 K
β = 100.089 (3)°Block, colourless
V = 1035.78 (13) Å30.24 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2557 independent reflections
Radiation source: fine-focus sealed tube2092 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω– and ϕ–scansθmax = 28.3°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1918
Tmin = 0.970, Tmax = 0.980k = 1313
9722 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071H-atom parameters constrained
wR(F2) = 0.199 w = 1/[σ2(Fo2) + (0.0625P)2 + 1.8972P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2557 reflectionsΔρmax = 0.43 e Å3
155 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (3)
Crystal data top
C6H6NO2·C4H3O4V = 1035.78 (13) Å3
Mr = 239.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.6498 (9) ŵ = 0.13 mm1
b = 10.3976 (8) ÅT = 295 K
c = 6.9067 (5) Å0.24 × 0.20 × 0.16 mm
β = 100.089 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2557 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2092 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.980Rint = 0.027
9722 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.199H-atom parameters constrained
S = 1.10Δρmax = 0.43 e Å3
2557 reflectionsΔρmin = 0.33 e Å3
155 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.57261 (18)0.0804 (3)0.3125 (4)0.0320 (6)
C20.6336 (2)0.1778 (3)0.3751 (5)0.0389 (7)
H20.61700.26280.34540.047*
C30.7201 (2)0.1492 (3)0.4825 (5)0.0438 (7)
H30.76180.21490.52610.053*
C40.7440 (2)0.0230 (3)0.5246 (5)0.0412 (7)
H40.80200.00270.59630.049*
C50.6817 (2)0.0725 (3)0.4599 (5)0.0401 (7)
H50.69710.15820.48690.048*
N10.59856 (15)0.0413 (2)0.3575 (4)0.0342 (5)
H10.55990.10210.31870.041*
C60.47635 (19)0.1001 (3)0.1946 (4)0.0346 (6)
C70.79780 (19)0.0490 (3)0.0421 (4)0.0354 (6)
C80.8827 (2)0.0055 (3)0.1646 (5)0.0373 (6)
H80.87620.08780.21300.045*
C90.9664 (2)0.0462 (3)0.2149 (5)0.0388 (7)
H91.00840.00610.29550.047*
C101.0058 (2)0.1714 (3)0.1674 (5)0.0401 (7)
O10.45516 (17)0.2082 (2)0.1321 (4)0.0566 (7)
O20.42766 (14)0.0007 (2)0.1721 (4)0.0453 (6)
H2A0.37660.01610.10750.068*
O30.72935 (14)0.0300 (2)0.0195 (4)0.0446 (6)
O40.79341 (16)0.1568 (2)0.0311 (4)0.0601 (8)
O50.95136 (17)0.2604 (2)0.0741 (4)0.0559 (7)
H5A0.89780.23400.05230.084*
O61.08852 (16)0.1899 (3)0.2139 (4)0.0580 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0282 (13)0.0299 (13)0.0366 (14)0.0020 (10)0.0024 (10)0.0014 (11)
C20.0389 (15)0.0262 (13)0.0493 (17)0.0000 (11)0.0014 (13)0.0055 (12)
C30.0374 (15)0.0392 (16)0.0514 (18)0.0078 (13)0.0014 (13)0.0081 (14)
C40.0284 (13)0.0471 (17)0.0440 (17)0.0014 (12)0.0051 (12)0.0031 (13)
C50.0310 (14)0.0349 (15)0.0518 (18)0.0029 (11)0.0001 (12)0.0068 (13)
N10.0270 (11)0.0274 (11)0.0458 (14)0.0014 (9)0.0005 (10)0.0004 (10)
C60.0270 (13)0.0327 (14)0.0417 (15)0.0060 (10)0.0003 (11)0.0041 (11)
C70.0295 (13)0.0331 (14)0.0426 (15)0.0006 (11)0.0031 (11)0.0015 (12)
C80.0358 (14)0.0296 (13)0.0451 (16)0.0011 (11)0.0029 (12)0.0029 (12)
C90.0352 (14)0.0320 (14)0.0452 (17)0.0020 (11)0.0041 (12)0.0017 (12)
C100.0378 (15)0.0350 (15)0.0459 (17)0.0054 (12)0.0024 (13)0.0057 (13)
O10.0479 (13)0.0352 (12)0.0781 (18)0.0090 (10)0.0125 (12)0.0019 (12)
O20.0261 (10)0.0393 (12)0.0648 (15)0.0008 (9)0.0079 (9)0.0009 (10)
O30.0323 (10)0.0425 (12)0.0555 (14)0.0055 (9)0.0018 (9)0.0043 (10)
O40.0395 (12)0.0409 (13)0.092 (2)0.0009 (10)0.0120 (12)0.0193 (13)
O50.0458 (13)0.0373 (12)0.0786 (18)0.0083 (10)0.0054 (12)0.0109 (12)
O60.0378 (12)0.0526 (15)0.0787 (19)0.0125 (11)0.0037 (12)0.0083 (13)
Geometric parameters (Å, º) top
C1—N11.342 (4)C6—O21.261 (3)
C1—C21.370 (4)C7—O41.227 (4)
C1—C61.514 (4)C7—O31.284 (3)
C2—C31.384 (4)C7—C81.488 (4)
C2—H20.9300C8—C91.328 (4)
C3—C41.376 (5)C8—H80.9300
C3—H30.9300C9—C101.484 (4)
C4—C51.369 (4)C9—H90.9300
C4—H40.9300C10—O61.213 (4)
C5—N11.336 (4)C10—O51.315 (4)
C5—H50.9300O2—H2A0.8200
N1—H10.8600O5—H5A0.8200
C6—O11.224 (4)
N1—C1—C2118.8 (2)O1—C6—O2128.0 (3)
N1—C1—C6116.8 (2)O1—C6—C1117.9 (3)
C2—C1—C6124.4 (3)O2—C6—C1114.0 (2)
C1—C2—C3119.7 (3)O4—C7—O3123.4 (3)
C1—C2—H2120.1O4—C7—C8124.1 (3)
C3—C2—H2120.1O3—C7—C8112.5 (3)
C4—C3—C2119.5 (3)C9—C8—C7129.5 (3)
C4—C3—H3120.2C9—C8—H8115.2
C2—C3—H3120.2C7—C8—H8115.2
C5—C4—C3119.5 (3)C8—C9—C10132.4 (3)
C5—C4—H4120.3C8—C9—H9113.8
C3—C4—H4120.3C10—C9—H9113.8
N1—C5—C4119.4 (3)O6—C10—O5120.7 (3)
N1—C5—H5120.3O6—C10—C9119.4 (3)
C4—C5—H5120.3O5—C10—C9120.0 (3)
C5—N1—C1123.1 (2)C6—O2—H2A109.5
C5—N1—H1118.5C10—O5—H5A109.5
C1—N1—H1118.5
N1—C1—C2—C30.0 (5)C2—C1—C6—O18.5 (5)
C6—C1—C2—C3179.9 (3)N1—C1—C6—O27.8 (4)
C1—C2—C3—C40.3 (5)C2—C1—C6—O2172.1 (3)
C2—C3—C4—C50.2 (5)O4—C7—C8—C91.2 (6)
C3—C4—C5—N10.2 (5)O3—C7—C8—C9178.2 (3)
C4—C5—N1—C10.6 (5)C7—C8—C9—C101.2 (6)
C2—C1—N1—C50.5 (5)C8—C9—C10—O6171.4 (4)
C6—C1—N1—C5179.7 (3)C8—C9—C10—O58.0 (6)
N1—C1—C6—O1171.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.282.639 (3)105
O5—H5A···O40.821.732.540 (3)168
N1—H1···O1i0.862.022.725 (3)139
O2—H2A···O3ii0.821.712.463 (3)152
C2—H2···O2iii0.932.543.462 (4)170
C3—H3···O6iv0.932.593.221 (4)125
C5—H5···O4v0.932.403.251 (4)152
C8—H8···O6vi0.932.403.285 (4)158
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y1/2, z+1/2; (iv) x+2, y, z+1; (v) x, y+1/2, z+1/2; (vi) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H6NO2·C4H3O4
Mr239.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)14.6498 (9), 10.3976 (8), 6.9067 (5)
β (°) 100.089 (3)
V3)1035.78 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.24 × 0.20 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
9722, 2557, 2092
Rint0.027
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.199, 1.10
No. of reflections2557
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.33

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.282.639 (3)105
O5—H5A···O40.821.732.540 (3)168
N1—H1···O1i0.862.022.725 (3)139
O2—H2A···O3ii0.821.712.463 (3)152
C2—H2···O2iii0.932.543.462 (4)170
C3—H3···O6iv0.932.593.221 (4)125
C5—H5···O4v0.932.403.251 (4)152
C8—H8···O6vi0.932.403.285 (4)158
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y1/2, z+1/2; (iv) x+2, y, z+1; (v) x, y+1/2, z+1/2; (vi) x+2, y1/2, z+1/2.
 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT Madras, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBanerjee, S. & Murugavel, R. (2004). Cryst. Growth Des. 4, 545–552.  Web of Science CSD CrossRef CAS Google Scholar
First citationBis, J. A., McLaughlin, O. L., Vishweshwar, P. & Zaworotko, M. J. (2006). Cryst. Growth Des. 6, 2648–2650.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds