organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-[1-(4-chloro­phen­yl)-3-cyano-1H-pyrazol-5-yl]acetamide

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 6 July 2012; accepted 23 October 2012; online 31 October 2012)

The title compound, C12H8Cl2N4O, was synthesized by the reaction of 5-amino-1-(4-chloro­phen­yl)-1H-pyrazole-3-carbonitrile and 2-chloro­acetyl chloride. The dihedral angle between the pyrazole and benzene rings is 30.7 (3)°. In the crystal structure, strong N—H⋯O hydrogen bonds link the mol­ecules into chains along [001]. C—H⋯N hydrogen bonds are also present.

Related literature

The title compound is important in the synthesis of derivatives of the insecticide Fipronil {systematic name: (RS)-5-amino-1-[2,6-dichloro-4-(trifluoro­meth­yl)phen­yl]-4-(trifluoro­methyl­sulfin­yl)-1H-pyrazole-3-carbonitrile}. For the biological activity of N-pyrazole derivatives, see: Zhao et al. (2010[Zhao, Q. Q., Li, Y. Q., Xiong, L. X. & Wang, Q. M. (2010). J. Agric. Food Chem. 58, 4992-4998.]); Liu et al. (2010[Liu, Y. Y., Shi, H., Li, Y. F. & Zhu, H. J. (2010). J. Heterocycl. Chem. 47, 897-902.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the structure of 2-chloro-N-(3-cyano-1-(2,6-dichloro-4-(tri­fluoro­meth­yl)phen­yl)-1H-pyrazol-5-yl)acetamide, see: Zhang et al. (2012[Zhang, J., He, Q., Jiang, Q., Mu, H. & Wan, R. (2012). Acta Cryst. E68, o104.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8Cl2N4O

  • Mr = 295.12

  • Orthorhombic, P n a 21

  • a = 18.493 (4) Å

  • b = 13.815 (3) Å

  • c = 5.060 (1) Å

  • V = 1292.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.865, Tmax = 0.952

  • 2646 measured reflections

  • 2606 independent reflections

  • 2255 reflections with I > 2σ(I)

  • Rint = 0.024

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 1.01

  • 2606 reflections

  • 173 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1271 Friedel pairs

  • Flack parameter: 0.09 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Oi 0.86 2.16 2.858 (3) 137
C12—H12C⋯N2ii 0.97 2.52 3.445 (3) 160
Symmetry codes: (i) x, y, z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXS97.

Supporting information


Comment top

N-Pyrazole derivatives are of great interest because of their diverse biological activities such as insecticidal (Zhao et al., 2010) and antifungal activities (Liu et al., 2010). The title compound is an important intermediate in the synthesis of N-aromatic pyrazole derivatives. The molecular structure of (I) is shown in Fig.1. In this structure, bond length and angles are within the normal range (Allen et al., 1987) and the mean deviation from the plane(N1/N2/C9/C8/C7) is 0.0045 Å. The dihedral angle between the pyrazole and phenyl ring in compound (I) is 30.7 (3)°, which is smaller than the angle in the structure of 2-chloro-N- (3-cyano-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-1H-pyrazol-5-yl) acetamide (Zhang et al., 2012), which is 71.5 (3)°. While bond lengths of the two compounds are similar, the difference in the dihedral angle probably results from greater steric hindrance in the (trifluoromethyl)phenyl derivative. In the crystal structure, strong N—H···O hydrogen bonds link the molecules into infinite one-dimensional chains along the [001] direction. Intermolecular C—H···N and N—H···O hydrogen bonds (Table 1) may help to establish the molecular conformation of (I). (Fig. 2)

Related literature top

The title compound is an important compound in the synthesis of derivatives of the insecticide Fipronil {systematic name: (RS)-5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(trifluoromethylsulfinyl)-1H-pyrazole-3-carbonitrile}. For the biological activity of N-pyrazole derivatives, see: Zhao et al. (2010); Liu et al. (2010). For bond-length data, see: Allen et al. (1987). For the structure of 2-chloro-N-(3-cyano-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-1H-pyrazol-5-yl)acetamide, see: Zhang et al. (2012).

Experimental top

To a stirred solution of 5-amino-1-(4-chlorophenyl)-1H-pyrazole-3-carbonitrile (5 mmol) in THF (20 ml) was added 2-chloroacetyl chloride (5 mmol) dropwise at 0–5°C. During the addition, the solution is cooled in an ice-salt bath. After the cooling bath had been removed, the reaction mixture was allowed to stand for 2 h at room temperature. The crude product (I) precipitated and was filtered. Pure compound (I) was obtained by crystallization from ethanol. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement top

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93–0.97 Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXS97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial packing view showing the hydrogen-bonded network. Dashed lines indicate intermolecular N—H···O and C—H···N hydrogen bonds.
2-Chloro-N-[1-(4-chlorophenyl)-3-cyano-1H-pyrazol-5-yl]acetamide top
Crystal data top
C12H8Cl2N4ODx = 1.516 Mg m3
Mr = 295.12Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 25 reflections
a = 18.493 (4) Åθ = 9–13°
b = 13.815 (3) ŵ = 0.50 mm1
c = 5.060 (1) ÅT = 293 K
V = 1292.7 (4) Å3Block, colorless
Z = 40.30 × 0.20 × 0.10 mm
F(000) = 600
Data collection top
Enraf–Nonius CAD-4
diffractometer
2255 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 25.4°, θmin = 2.2°
ω/2θ scansh = 2222
Absorption correction: ψ scan
(North et al., 1968)
k = 016
Tmin = 0.865, Tmax = 0.952l = 60
2646 measured reflections3 standard reflections every 200 reflections
2606 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.064P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.16 e Å3
2606 reflectionsΔρmin = 0.24 e Å3
173 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.023 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1271 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.09 (9)
Crystal data top
C12H8Cl2N4OV = 1292.7 (4) Å3
Mr = 295.12Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 18.493 (4) ŵ = 0.50 mm1
b = 13.815 (3) ÅT = 293 K
c = 5.060 (1) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2255 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.024
Tmin = 0.865, Tmax = 0.9523 standard reflections every 200 reflections
2646 measured reflections intensity decay: 1%
2606 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.099Δρmax = 0.16 e Å3
S = 1.01Δρmin = 0.24 e Å3
2606 reflectionsAbsolute structure: Flack (1983), 1271 Friedel pairs
173 parametersAbsolute structure parameter: 0.09 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.20761 (11)0.90238 (15)0.4786 (4)0.0473 (5)
Cl10.07270 (4)0.51152 (5)0.76028 (19)0.0634 (3)
N10.27787 (9)0.73978 (13)0.1128 (5)0.0330 (5)
C10.25223 (13)0.63629 (18)0.4875 (6)0.0385 (6)
H1A0.30110.63810.53090.046*
Cl20.07546 (4)0.99063 (6)0.07496 (17)0.0548 (2)
N20.34595 (10)0.70361 (14)0.0940 (6)0.0397 (5)
C20.20505 (14)0.58124 (18)0.6366 (6)0.0428 (7)
H2B0.22200.54490.77850.051*
N30.20572 (11)0.87436 (15)0.0382 (5)0.0339 (5)
H3A0.18240.88290.10700.041*
C30.13257 (15)0.58071 (18)0.5729 (6)0.0432 (6)
C40.10698 (14)0.63335 (19)0.3602 (7)0.0442 (7)
H4A0.05790.63250.31980.053*
N40.51184 (12)0.73394 (18)0.1943 (8)0.0707 (9)
C50.15393 (13)0.68719 (18)0.2079 (6)0.0407 (6)
H5A0.13700.72200.06320.049*
C60.22697 (12)0.68864 (16)0.2739 (6)0.0330 (6)
C70.27029 (12)0.82144 (17)0.0352 (5)0.0329 (6)
C80.33442 (12)0.83866 (18)0.1594 (6)0.0388 (6)
H8A0.34570.88870.27520.047*
C90.37887 (13)0.76412 (17)0.0731 (6)0.0390 (6)
C100.45341 (15)0.74665 (18)0.1393 (8)0.0492 (8)
C110.17925 (12)0.91243 (17)0.2649 (5)0.0314 (5)
C120.10972 (13)0.96827 (18)0.2494 (6)0.0357 (6)
H12B0.07320.93320.34830.043*
H12C0.11681.03010.33650.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0494 (11)0.0672 (14)0.0253 (11)0.0153 (10)0.0035 (9)0.0035 (9)
Cl10.0730 (5)0.0656 (5)0.0516 (5)0.0249 (4)0.0147 (5)0.0028 (5)
N10.0321 (10)0.0332 (10)0.0337 (13)0.0041 (8)0.0021 (10)0.0001 (11)
C10.0422 (14)0.0375 (14)0.0358 (16)0.0021 (11)0.0055 (13)0.0011 (12)
Cl20.0469 (4)0.0817 (5)0.0359 (4)0.0234 (3)0.0066 (4)0.0023 (4)
N20.0315 (10)0.0376 (10)0.0499 (15)0.0067 (8)0.0030 (11)0.0018 (13)
C20.0568 (16)0.0392 (13)0.0324 (16)0.0039 (12)0.0011 (13)0.0053 (13)
N30.0391 (11)0.0391 (12)0.0235 (11)0.0119 (9)0.0029 (10)0.0032 (10)
C30.0561 (16)0.0395 (13)0.0341 (15)0.0064 (11)0.0088 (15)0.0043 (14)
C40.0385 (14)0.0512 (16)0.0430 (17)0.0066 (12)0.0014 (14)0.0034 (15)
N40.0401 (14)0.0684 (16)0.104 (3)0.0034 (11)0.0086 (17)0.008 (2)
C50.0430 (14)0.0443 (14)0.0348 (16)0.0042 (11)0.0031 (12)0.0025 (13)
C60.0360 (12)0.0303 (11)0.0328 (14)0.0022 (9)0.0007 (11)0.0015 (12)
C70.0346 (12)0.0344 (13)0.0298 (13)0.0039 (10)0.0011 (12)0.0003 (12)
C80.0409 (13)0.0370 (13)0.0384 (16)0.0004 (11)0.0043 (13)0.0043 (13)
C90.0324 (12)0.0382 (13)0.0465 (17)0.0010 (11)0.0011 (13)0.0002 (13)
C100.0397 (14)0.0411 (15)0.067 (2)0.0002 (11)0.0052 (15)0.0078 (16)
C110.0344 (12)0.0338 (12)0.0259 (13)0.0009 (9)0.0002 (12)0.0016 (12)
C120.0366 (12)0.0425 (13)0.0279 (13)0.0059 (10)0.0019 (12)0.0030 (13)
Geometric parameters (Å, º) top
O—C111.210 (3)N3—H3A0.8600
Cl1—C31.743 (3)C3—C41.382 (4)
N1—N21.358 (2)C4—C51.379 (4)
N1—C71.361 (3)C4—H4A0.9300
N1—C61.431 (3)N4—C101.129 (3)
C1—C61.382 (4)C5—C61.391 (3)
C1—C21.382 (4)C5—H5A0.9300
C1—H1A0.9300C7—C81.363 (3)
Cl2—C121.786 (3)C8—C91.388 (3)
N2—C91.336 (4)C8—H8A0.9300
C2—C31.379 (4)C9—C101.439 (4)
C2—H2B0.9300C11—C121.502 (3)
N3—C111.354 (3)C12—H12B0.9700
N3—C71.400 (3)C12—H12C0.9700
N2—N1—C7111.21 (19)C1—C6—C5120.6 (2)
N2—N1—C6117.91 (19)C1—C6—N1118.8 (2)
C7—N1—C6130.88 (18)C5—C6—N1120.6 (2)
C6—C1—C2120.1 (2)N1—C7—C8108.0 (2)
C6—C1—H1A119.9N1—C7—N3121.8 (2)
C2—C1—H1A119.9C8—C7—N3130.2 (2)
C9—N2—N1103.70 (19)C7—C8—C9103.9 (2)
C3—C2—C1119.3 (3)C7—C8—H8A128.0
C3—C2—H2B120.4C9—C8—H8A128.0
C1—C2—H2B120.4N2—C9—C8113.2 (2)
C11—N3—C7121.4 (2)N2—C9—C10118.6 (2)
C11—N3—H3A119.3C8—C9—C10128.2 (3)
C7—N3—H3A119.3N4—C10—C9179.0 (4)
C2—C3—C4120.8 (3)O—C11—N3123.8 (2)
C2—C3—Cl1119.6 (2)O—C11—C12118.5 (2)
C4—C3—Cl1119.6 (2)N3—C11—C12117.7 (2)
C5—C4—C3120.2 (2)C11—C12—Cl2116.15 (19)
C5—C4—H4A119.9C11—C12—H12B108.2
C3—C4—H4A119.9Cl2—C12—H12B108.2
C4—C5—C6119.0 (3)C11—C12—H12C108.2
C4—C5—H5A120.5Cl2—C12—H12C108.2
C6—C5—H5A120.5H12B—C12—H12C107.4
C7—N1—N2—C91.3 (3)C6—N1—C7—C8177.8 (3)
C6—N1—N2—C9178.0 (2)N2—N1—C7—N3177.1 (2)
C6—C1—C2—C31.2 (4)C6—N1—C7—N33.8 (4)
C1—C2—C3—C40.9 (4)C11—N3—C7—N1139.4 (3)
C1—C2—C3—Cl1179.9 (2)C11—N3—C7—C842.6 (4)
C2—C3—C4—C50.2 (4)N1—C7—C8—C90.7 (3)
Cl1—C3—C4—C5179.0 (2)N3—C7—C8—C9177.5 (3)
C3—C4—C5—C60.9 (4)N1—N2—C9—C80.8 (3)
C2—C1—C6—C50.5 (4)N1—N2—C9—C10179.9 (3)
C2—C1—C6—N1175.9 (2)C7—C8—C9—N20.1 (3)
C4—C5—C6—C10.5 (4)C7—C8—C9—C10179.3 (3)
C4—C5—C6—N1176.9 (2)N2—C9—C10—N4169 (22)
N2—N1—C6—C129.2 (3)C8—C9—C10—N412 (22)
C7—N1—C6—C1151.8 (3)C7—N3—C11—O1.6 (4)
N2—N1—C6—C5147.2 (2)C7—N3—C11—C12179.9 (2)
C7—N1—C6—C531.8 (4)O—C11—C12—Cl2174.0 (2)
N2—N1—C7—C81.3 (3)N3—C11—C12—Cl27.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Oi0.862.162.858 (3)137
C12—H12C···N2ii0.972.523.445 (3)160
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H8Cl2N4O
Mr295.12
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)18.493 (4), 13.815 (3), 5.060 (1)
V3)1292.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.865, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
2646, 2606, 2255
Rint0.024
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.01
No. of reflections2606
No. of parameters173
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.24
Absolute structureFlack (1983), 1271 Friedel pairs
Absolute structure parameter0.09 (9)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Oi0.86002.16002.858 (3)137.00
C12—H12C···N2ii0.97002.52003.445 (3)160.00
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Science and Technology Project of Jiangsu Province (No. BE2011352) for financial support and acknowledge the help of members of the laboratory.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLiu, Y. Y., Shi, H., Li, Y. F. & Zhu, H. J. (2010). J. Heterocycl. Chem. 47, 897–902.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J., He, Q., Jiang, Q., Mu, H. & Wan, R. (2012). Acta Cryst. E68, o104.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, Q. Q., Li, Y. Q., Xiong, L. X. & Wang, Q. M. (2010). J. Agric. Food Chem. 58, 4992–4998.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds