organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3146-o3147

3-tert-Butyl 5-methyl (2R,4S,5R)-2-(4-methoxyphenyl)-4-(3-nitro­phenyl)-1,3-oxazolidine-3,5-di­carboxylate

aBenemérita Universidad Autónoma de Puebla, Facultad de Ciencias Químicas, Ciudad Universitaria, Puebla, Pue. 72570, Mexico, bUniversidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Av. Universidad S/N, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León CP 66451, Mexico, and cInstitut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
*Correspondence e-mail: sylvain_bernes@hotmail.com

(Received 18 September 2012; accepted 6 October 2012; online 20 October 2012)

The title mol­ecule, C23H26N2O8, was synthesized in three steps starting from m-nitro­cinnamic acid. The central oxazolidine ring adopts an almost perfect envelope conformation with the O atom as the flap [puckering parameter φ = 0.3 (6)°]. The dihedral angle formed by the benzene rings is 61.81 (9)°. In the crystal, mol­ecules are connected into double chains parallel to [010] by C—H⋯O hydrogen bonds. The absolute configuration was assigned from the synthetic procedure.

Related literature

For the Sharpless asymmetric amino­hydroxy­lation, see: Rudolph et al. (1996[Rudolph, J., Sennhenn, P. C., Vlaar, C. P. & Sharpless, K. B. (1996). Angew. Chem. Int. Ed. 35, 2810-2813.]). For the synthesis of the phenyl­isoserine precursor of the title mol­ecule, see: Montiel-Smith et al. (2002[Montiel-Smith, S., Cervantes-Mejía, V., Dubois, J., Guénard, D., Guéritte, F. & Sandoval-Ramírez, J. (2002). Eur. J. Org. Chem. pp. 2260-2264.]). For the stereocontrolled formation of the oxazolidine in the title mol­ecule, see: Denis et al. (1994[Denis, J.-N., Kanazawa, A. M. & Green, A. E. (1994). Tetrahedron Lett. 35, 105-108.]). For the structure of a related chiral N-Boc-protected oxazolidine, see: Tinant et al. (1996[Tinant, B., Declercq, J. P. & Cagnon, J. R. (1996). Bull. Soc. Chim. Belg. 105, 325-328.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C23H26N2O8

  • Mr = 458.46

  • Monoclinic, P 21

  • a = 10.383 (1) Å

  • b = 6.0303 (6) Å

  • c = 18.7366 (17) Å

  • β = 95.591 (4)°

  • V = 1167.57 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.60 × 0.16 × 0.16 mm

Data collection
  • Siemens P4 diffractometer

  • 3169 measured reflections

  • 2275 independent reflections

  • 1628 reflections with I > 2σ(I)

  • Rint = 0.024

  • 3 standard reflections every 97 reflections intensity decay: 0.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.095

  • S = 1.02

  • 2275 reflections

  • 304 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O15i 0.98 2.50 3.400 (4) 153
C5—H5A⋯O28ii 0.98 2.59 3.387 (4) 138
C26—H26A⋯O1iii 0.93 2.59 3.252 (4) 128
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z]; (iii) x, y-1, z.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is related to a project about new synthetic routes to obtain isoserines (α-hydroxy-β-amino acids). The stereocontrol of the synthesis is a key point, since chiral isoserines are found in bioactive substances, as in the side chain of the emblematic anti-cancer agent Paclitaxel, initially marketed under the brand name Taxol. We focused our efforts toward the synthesis of (2R,3S)-N-Boc-β-phenylisoserines (Montiel-Smith et al., 2002). Starting from commercially available m-nitrocinnamic acid, which was esterified in a first step, we probed various conditions for an asymmetric aminohydroxylation (Rudolph et al., 1996), and the best results were obtained by using tert-butyl-N-chlorocarbamate as the nitrogen source, (DHQ)2PHAL (hydroquinine 1,4-phthalazinediyl diether) as chiral ligand, and K2OsO2(OH)4 as catalyst. The desired phenylisoserine was eventually obtained with 81% ee (see compound 2c in Montiel-Smith et al., 2002). The title compound resulted from the protection of the amine and hydroxyl groups, via the formation of an oxazolidine (Fig. 1).

The molecular structure (Fig. 2) allowed to check for the configuration of chiral atoms C2 and C3 in the precursor isoserine 3, confirming that the chiral inductor (DHQ)2PHAL affords the (2R,3S) isomer predominantly, as expected. The deduced configuration of the third stereocenter in the oxazolidine I, 2R, also agrees with literature data for related reactions (Denis et al., 1994). The substituents in the oxazolidine skeleton are arranged in such a way that steric hindrance is avoided. The oxazolidine exhibits a conformation very close to the ideal envelope conformation on O1, the puckering parameters (Cremer & Pople, 1975) being ϕ = 0.3 (6)° and q2 = 0.331 (3) Å. The ring conformation is related to the substituents distribution. For instance, the X-ray structure for another N-Boc protected oxazolidine with a different absolute configuration, (2R,4R,5S), showed a twisted oxazolidine ring (Tinant et al., 1996).

The crystal structure (Fig. 3) is dominated by the stacking of bulky Boc groups, which are oriented along [100], with the molecules linked into double chains parallel to [010] by C—H···O hydrogen bonds (Table 1).

Related literature top

For the Sharpless asymmetric aminohydroxylation, see: Rudolph et al. (1996). For the synthesis of the phenylisoserine precursor of the title molecule, see: Montiel-Smith et al. (2002). For the stereocontrolled formation of the oxazolidine in the title molecule, see: Denis et al. (1994). For the structure of a related chiral N-Boc-protected oxazolidine, see: Tinant et al. (1996). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The synthesis starting from commercially available m-nitrocinnamic acid 1 is depicted in Fig. 1. The two steps preparation of the phenylisoserine 3 has been published (Montiel-Smith et al., 2002; see compound 2c therein). The enantiospecific aminohydroxylation reaction was carried out using tBuOCONHCl as nitrogen source, reagent previously prepared in situ by reacting tBuOCONH2 and tBuOCl in a NaOH solution. The last step to afford the title compound is a protection of the amine and hydroxyl groups of 3, via the formation of an oxazolidine, carried out by reacting 3 with 1-(dimethoxymethyl)-4-methoxybenzene in presence of pyridinium p-toluenesulfonate, in refluxing toluene. The isolated compound I was crystallized from AcOEt/heptane.

Refinement top

The assignment of the absolute configuration of the three chiral centers was based on the stereospecificity of the synthetic pathway. The second synthetic step (see Fig. 1) allows to fix the stereochemistry for C4 and C5 centers. The last chiral center on C2, formed in the third step, is assigned as 2R relatively to the (4S,5R) stereoisomer. The reaction afforded a single stereoisomer. The formation of the chiral center 2R in I is in agreement with reports for related compounds (Denis et al., 1994). Measured Friedel pairs are not suitable for checking this assignation, and were merged (425 pairs). All H atoms were placed in idealized positions, with C—H bond lengths fixed to 0.98 (methine CH), 0.96 (methyl CH3, rigid groups free to rotate about the C—C bonds) or 0.93 Å (aromatic CH). Isotropic displacement parameters for H atoms were calculated as Uiso(H) = xUeq(carrier C), where x = 1.5 (methyl groups) or 1.2 (aromatic and methine CH).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The 3-steps synthesis of the title molecule, (I). i) SOCl2, MeOH, reflux; ii) (DHQ)2PHAL, n-PrOH/tBuOCONHCl; K2OsO2(OH)4, 0 °C; iii) p-MeOC6H4CH(OMe)2, PPTS, toluene, 80 °C.
[Figure 2] Fig. 2. ORTEP-like view of the title molecule, showing 30% displacement ellipsoids for non-H atoms.
[Figure 3] Fig. 3. Part of the crystal structure of the title compound, viewed along the b axis. In four molecules, the Boc substituents are shown using a spacefill representation, in order to emphasize the stacking for these groups in the crystal.
3-tert-Butyl 5-methyl (2R,4S,5R)- 2-(4-methoxyphenyl)-4-(3-nitrophenyl)-1,3-oxazolidine-3,5-dicarboxylate top
Crystal data top
C23H26N2O8F(000) = 484
Mr = 458.46Dx = 1.304 Mg m3
Monoclinic, P21Melting point = 388–391 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 10.383 (1) ÅCell parameters from 58 reflections
b = 6.0303 (6) Åθ = 3.9–11.9°
c = 18.7366 (17) ŵ = 0.10 mm1
β = 95.591 (4)°T = 298 K
V = 1167.57 (19) Å3Block, colourless
Z = 20.60 × 0.16 × 0.16 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.024
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.0°
Graphite monochromatorh = 121
ω scansk = 71
3169 measured reflectionsl = 2222
2275 independent reflections3 standard reflections every 97 reflections
1628 reflections with I > 2σ(I) intensity decay: 0.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0467P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2275 reflectionsΔρmax = 0.12 e Å3
304 parametersΔρmin = 0.13 e Å3
1 restraintExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.017 (3)
Primary atom site location: structure-invariant direct methods
Crystal data top
C23H26N2O8V = 1167.57 (19) Å3
Mr = 458.46Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.383 (1) ŵ = 0.10 mm1
b = 6.0303 (6) ÅT = 298 K
c = 18.7366 (17) Å0.60 × 0.16 × 0.16 mm
β = 95.591 (4)°
Data collection top
Siemens P4
diffractometer
Rint = 0.024
3169 measured reflections3 standard reflections every 97 reflections
2275 independent reflections intensity decay: 0.5%
1628 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.095H-atom parameters constrained
S = 1.02Δρmax = 0.12 e Å3
2275 reflectionsΔρmin = 0.13 e Å3
304 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7821 (2)0.5989 (4)0.18897 (11)0.0582 (7)
C20.8184 (3)0.5427 (6)0.26275 (16)0.0467 (8)
H2A0.77690.64460.29420.056*
N30.7630 (3)0.3207 (5)0.26723 (13)0.0474 (7)
C40.7412 (3)0.2150 (6)0.19661 (14)0.0457 (8)
H4A0.79700.08440.19470.055*
C50.7866 (3)0.3983 (7)0.14856 (17)0.0543 (9)
H5A0.72410.41040.10610.065*
C60.9643 (3)0.5490 (5)0.28030 (15)0.0440 (8)
C71.0343 (3)0.3772 (6)0.31379 (17)0.0508 (9)
H7A0.99140.24920.32580.061*
C81.1675 (3)0.3915 (7)0.32989 (17)0.0549 (9)
H8A1.21290.27320.35200.066*
C91.2322 (3)0.5807 (7)0.31311 (16)0.0519 (9)
C101.1655 (4)0.7536 (7)0.27930 (19)0.0628 (10)
H10A1.20900.88050.26680.075*
C111.0321 (4)0.7370 (6)0.26391 (19)0.0603 (10)
H11A0.98700.85580.24190.072*
O121.3643 (2)0.5782 (5)0.33188 (12)0.0708 (8)
C131.4373 (4)0.7685 (8)0.3159 (2)0.0840 (14)
H13A1.52710.74370.33110.126*
H13B1.40710.89490.34060.126*
H13C1.42690.79530.26510.126*
C140.7368 (3)0.2149 (6)0.32801 (17)0.0446 (8)
O150.7056 (2)0.0214 (4)0.32967 (12)0.0564 (6)
O160.7505 (2)0.3553 (4)0.38389 (10)0.0502 (6)
C170.7426 (3)0.2749 (6)0.45810 (16)0.0556 (10)
C180.7608 (4)0.4849 (8)0.5014 (2)0.0852 (14)
H18A0.69740.59230.48340.128*
H18B0.84600.54280.49750.128*
H18C0.75060.45360.55070.128*
C190.6121 (4)0.1736 (10)0.4654 (2)0.0896 (16)
H19A0.54570.26810.44280.134*
H19B0.60000.15750.51520.134*
H19C0.60720.03070.44270.134*
C200.8534 (4)0.1162 (10)0.4763 (2)0.0901 (14)
H20A0.84100.01430.44710.135*
H20B0.85660.07570.52600.135*
H20C0.93330.18640.46740.135*
C210.6011 (3)0.1515 (6)0.17565 (15)0.0439 (8)
C220.4983 (3)0.2716 (7)0.19742 (18)0.0613 (10)
H22A0.51400.38810.22960.074*
C230.3719 (3)0.2199 (8)0.17162 (19)0.0719 (12)
H23A0.30360.30210.18660.086*
C240.3470 (3)0.0468 (8)0.12382 (18)0.0637 (11)
H24A0.26270.01170.10600.076*
C250.4499 (3)0.0711 (7)0.10355 (15)0.0494 (9)
C260.5756 (3)0.0233 (6)0.12914 (15)0.0465 (9)
H26A0.64320.10890.11500.056*
N270.4263 (3)0.2579 (6)0.05319 (14)0.0626 (9)
O280.3196 (3)0.2710 (6)0.01928 (13)0.0901 (11)
O290.5151 (3)0.3873 (6)0.04674 (14)0.0893 (9)
C300.9204 (4)0.3588 (8)0.12370 (18)0.0605 (11)
O310.9865 (3)0.1999 (6)0.13651 (16)0.0899 (10)
O320.9520 (3)0.5284 (7)0.08509 (16)0.1015 (11)
C331.0810 (4)0.5279 (14)0.0607 (3)0.137 (3)
H33A1.09210.65820.03260.206*
H33B1.09130.39830.03210.206*
H33C1.14460.52670.10150.206*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0616 (14)0.0538 (16)0.0564 (13)0.0020 (14)0.0088 (11)0.0128 (14)
C20.0548 (19)0.042 (2)0.0421 (17)0.0031 (18)0.0010 (14)0.0022 (17)
N30.0571 (17)0.0470 (17)0.0376 (14)0.0109 (15)0.0019 (12)0.0019 (14)
C40.0458 (18)0.052 (2)0.0385 (16)0.0010 (18)0.0007 (13)0.0027 (17)
C50.054 (2)0.063 (3)0.0437 (17)0.008 (2)0.0041 (15)0.005 (2)
C60.0543 (18)0.036 (2)0.0411 (16)0.0041 (18)0.0005 (15)0.0003 (16)
C70.053 (2)0.046 (2)0.0542 (19)0.0040 (19)0.0073 (16)0.0064 (18)
C80.057 (2)0.054 (2)0.054 (2)0.004 (2)0.0032 (16)0.0095 (19)
C90.051 (2)0.066 (3)0.0385 (16)0.007 (2)0.0045 (15)0.0062 (19)
C100.067 (2)0.051 (2)0.069 (2)0.016 (2)0.0007 (18)0.006 (2)
C110.063 (2)0.042 (2)0.073 (2)0.004 (2)0.0075 (18)0.005 (2)
O120.0519 (15)0.085 (2)0.0746 (15)0.0143 (17)0.0006 (12)0.0006 (17)
C130.062 (2)0.091 (4)0.100 (3)0.033 (3)0.014 (2)0.018 (3)
C140.0409 (18)0.047 (2)0.045 (2)0.0020 (19)0.0015 (14)0.0019 (19)
O150.0693 (15)0.0461 (16)0.0547 (14)0.0124 (14)0.0099 (11)0.0018 (12)
O160.0613 (14)0.0495 (14)0.0393 (11)0.0080 (13)0.0026 (10)0.0022 (11)
C170.065 (2)0.064 (3)0.0383 (17)0.011 (2)0.0088 (16)0.0024 (19)
C180.108 (3)0.092 (4)0.055 (2)0.026 (3)0.006 (2)0.017 (2)
C190.091 (3)0.113 (4)0.071 (2)0.035 (3)0.038 (2)0.016 (3)
C200.104 (3)0.103 (4)0.061 (2)0.011 (3)0.006 (2)0.022 (3)
C210.0427 (18)0.049 (2)0.0398 (15)0.0022 (17)0.0029 (14)0.0001 (17)
C220.055 (2)0.070 (3)0.059 (2)0.005 (2)0.0047 (17)0.012 (2)
C230.049 (2)0.096 (3)0.072 (2)0.014 (2)0.0076 (18)0.011 (3)
C240.045 (2)0.096 (3)0.0491 (18)0.007 (2)0.0001 (16)0.004 (2)
C250.052 (2)0.063 (2)0.0326 (15)0.0074 (19)0.0009 (14)0.0010 (17)
C260.047 (2)0.054 (2)0.0382 (16)0.0030 (17)0.0044 (14)0.0000 (17)
N270.068 (2)0.080 (3)0.0386 (15)0.023 (2)0.0005 (15)0.0020 (18)
O280.0673 (17)0.139 (3)0.0621 (15)0.040 (2)0.0047 (13)0.0214 (19)
O290.105 (2)0.087 (2)0.0720 (17)0.006 (2)0.0127 (16)0.0255 (19)
C300.061 (3)0.077 (3)0.0432 (19)0.016 (3)0.0004 (17)0.007 (2)
O310.079 (2)0.099 (3)0.098 (2)0.005 (2)0.0398 (16)0.007 (2)
O320.0703 (18)0.138 (3)0.0973 (19)0.023 (2)0.0104 (15)0.049 (2)
C330.066 (3)0.223 (8)0.127 (4)0.030 (4)0.031 (3)0.062 (5)
Geometric parameters (Å, º) top
O1—C51.430 (4)C17—C181.506 (5)
O1—C21.437 (4)C17—C201.510 (6)
C2—N31.462 (5)C18—H18A0.9600
C2—C61.519 (4)C18—H18B0.9600
C2—H2A0.9800C18—H18C0.9600
N3—C141.356 (4)C19—H19A0.9600
N3—C41.466 (4)C19—H19B0.9600
C4—C211.518 (4)C19—H19C0.9600
C4—C51.529 (5)C20—H20A0.9600
C4—H4A0.9800C20—H20B0.9600
C5—C301.526 (5)C20—H20C0.9600
C5—H5A0.9800C21—C261.377 (4)
C6—C71.381 (4)C21—C221.384 (5)
C6—C111.385 (5)C22—C231.390 (5)
C7—C81.389 (5)C22—H22A0.9300
C7—H7A0.9300C23—C241.383 (6)
C8—C91.376 (5)C23—H23A0.9300
C8—H8A0.9300C24—C251.368 (5)
C9—C101.372 (5)C24—H24A0.9300
C9—O121.383 (4)C25—C261.376 (4)
C10—C111.391 (5)C25—N271.474 (5)
C10—H10A0.9300C26—H26A0.9300
C11—H11A0.9300N27—O291.223 (4)
O12—C131.423 (5)N27—O281.224 (4)
C13—H13A0.9600C30—O311.189 (5)
C13—H13B0.9600C30—O321.313 (5)
C13—H13C0.9600O32—C331.456 (5)
C14—O151.212 (4)C33—H33A0.9600
C14—O161.343 (4)C33—H33B0.9600
O16—C171.483 (4)C33—H33C0.9600
C17—C191.504 (5)
C5—O1—C2106.9 (2)C19—C17—C18111.1 (3)
O1—C2—N3101.7 (2)O16—C17—C20107.9 (3)
O1—C2—C6111.4 (2)C19—C17—C20113.3 (4)
N3—C2—C6113.6 (3)C18—C17—C20111.0 (3)
O1—C2—H2A110.0C17—C18—H18A109.5
N3—C2—H2A110.0C17—C18—H18B109.5
C6—C2—H2A110.0H18A—C18—H18B109.5
C14—N3—C2126.3 (3)C17—C18—H18C109.5
C14—N3—C4121.8 (3)H18A—C18—H18C109.5
C2—N3—C4111.9 (3)H18B—C18—H18C109.5
N3—C4—C21113.8 (2)C17—C19—H19A109.5
N3—C4—C5100.8 (3)C17—C19—H19B109.5
C21—C4—C5111.9 (2)H19A—C19—H19B109.5
N3—C4—H4A110.0C17—C19—H19C109.5
C21—C4—H4A110.0H19A—C19—H19C109.5
C5—C4—H4A110.0H19B—C19—H19C109.5
O1—C5—C30111.8 (3)C17—C20—H20A109.5
O1—C5—C4105.8 (2)C17—C20—H20B109.5
C30—C5—C4114.1 (3)H20A—C20—H20B109.5
O1—C5—H5A108.3C17—C20—H20C109.5
C30—C5—H5A108.3H20A—C20—H20C109.5
C4—C5—H5A108.3H20B—C20—H20C109.5
C7—C6—C11117.3 (3)C26—C21—C22118.7 (3)
C7—C6—C2123.3 (3)C26—C21—C4118.5 (3)
C11—C6—C2119.4 (3)C22—C21—C4122.6 (3)
C6—C7—C8121.4 (3)C21—C22—C23120.6 (4)
C6—C7—H7A119.3C21—C22—H22A119.7
C8—C7—H7A119.3C23—C22—H22A119.7
C9—C8—C7120.0 (3)C24—C23—C22120.4 (4)
C9—C8—H8A120.0C24—C23—H23A119.8
C7—C8—H8A120.0C22—C23—H23A119.8
C10—C9—C8120.0 (3)C25—C24—C23118.0 (3)
C10—C9—O12124.7 (4)C25—C24—H24A121.0
C8—C9—O12115.3 (4)C23—C24—H24A121.0
C9—C10—C11119.2 (4)C24—C25—C26122.3 (3)
C9—C10—H10A120.4C24—C25—N27119.2 (3)
C11—C10—H10A120.4C26—C25—N27118.5 (3)
C6—C11—C10122.0 (4)C25—C26—C21119.9 (3)
C6—C11—H11A119.0C25—C26—H26A120.0
C10—C11—H11A119.0C21—C26—H26A120.0
C9—O12—C13118.2 (3)O29—N27—O28124.0 (4)
O12—C13—H13A109.5O29—N27—C25118.1 (3)
O12—C13—H13B109.5O28—N27—C25117.9 (4)
H13A—C13—H13B109.5O31—C30—O32124.7 (4)
O12—C13—H13C109.5O31—C30—C5126.1 (4)
H13A—C13—H13C109.5O32—C30—C5109.3 (4)
H13B—C13—H13C109.5C30—O32—C33117.2 (5)
O15—C14—O16126.5 (3)O32—C33—H33A109.5
O15—C14—N3123.4 (3)O32—C33—H33B109.5
O16—C14—N3110.0 (3)H33A—C33—H33B109.5
C14—O16—C17120.9 (3)O32—C33—H33C109.5
O16—C17—C19110.5 (3)H33A—C33—H33C109.5
O16—C17—C18102.4 (3)H33B—C33—H33C109.5
C5—O1—C2—N334.8 (3)C4—N3—C14—O157.2 (5)
C5—O1—C2—C686.6 (3)C2—N3—C14—O169.3 (4)
O1—C2—N3—C14160.3 (3)C4—N3—C14—O16172.8 (3)
C6—C2—N3—C1480.0 (4)O15—C14—O16—C177.2 (5)
O1—C2—N3—C421.7 (3)N3—C14—O16—C17172.8 (2)
C6—C2—N3—C498.1 (3)C14—O16—C17—C1960.6 (4)
C14—N3—C4—C2160.8 (4)C14—O16—C17—C18179.0 (3)
C2—N3—C4—C21121.0 (3)C14—O16—C17—C2063.8 (4)
C14—N3—C4—C5179.3 (3)N3—C4—C21—C26152.8 (3)
C2—N3—C4—C51.1 (3)C5—C4—C21—C2693.8 (4)
C2—O1—C5—C3089.2 (3)N3—C4—C21—C2231.9 (4)
C2—O1—C5—C435.6 (3)C5—C4—C21—C2281.6 (4)
N3—C4—C5—O120.3 (3)C26—C21—C22—C231.4 (5)
C21—C4—C5—O1100.9 (3)C4—C21—C22—C23174.0 (3)
N3—C4—C5—C30103.0 (3)C21—C22—C23—C240.1 (6)
C21—C4—C5—C30135.8 (3)C22—C23—C24—C250.5 (6)
O1—C2—C6—C7129.1 (3)C23—C24—C25—C260.1 (5)
N3—C2—C6—C715.0 (4)C23—C24—C25—N27179.4 (3)
O1—C2—C6—C1152.5 (4)C24—C25—C26—C211.4 (5)
N3—C2—C6—C11166.7 (3)N27—C25—C26—C21179.3 (3)
C11—C6—C7—C80.5 (5)C22—C21—C26—C252.0 (4)
C2—C6—C7—C8178.9 (3)C4—C21—C26—C25173.6 (3)
C6—C7—C8—C90.7 (5)C24—C25—N27—O29165.8 (3)
C7—C8—C9—C101.2 (5)C26—C25—N27—O2913.5 (5)
C7—C8—C9—O12179.6 (3)C24—C25—N27—O2815.7 (5)
C8—C9—C10—C111.5 (5)C26—C25—N27—O28164.9 (3)
O12—C9—C10—C11179.3 (3)O1—C5—C30—O31122.5 (4)
C7—C6—C11—C100.9 (5)C4—C5—C30—O312.5 (5)
C2—C6—C11—C10179.3 (3)O1—C5—C30—O3257.8 (4)
C9—C10—C11—C61.4 (5)C4—C5—C30—O32177.8 (3)
C10—C9—O12—C130.6 (5)O31—C30—O32—C334.6 (6)
C8—C9—O12—C13179.8 (3)C5—C30—O32—C33175.7 (4)
C2—N3—C14—O15170.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O15i0.982.503.400 (4)153
C5—H5A···O28ii0.982.593.387 (4)138
C26—H26A···O1iii0.932.593.252 (4)128
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC23H26N2O8
Mr458.46
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)10.383 (1), 6.0303 (6), 18.7366 (17)
β (°) 95.591 (4)
V3)1167.57 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.60 × 0.16 × 0.16
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3169, 2275, 1628
Rint0.024
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.095, 1.02
No. of reflections2275
No. of parameters304
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.13

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O15i0.982.503.400 (4)153
C5—H5A···O28ii0.982.593.387 (4)138
C26—H26A···O1iii0.932.593.252 (4)128
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z; (iii) x, y1, z.
 

Acknowledgements

This work was supported by the France–Mexico ECOS-ANUIES (M97–E02) agreement.

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDenis, J.-N., Kanazawa, A. M. & Green, A. E. (1994). Tetrahedron Lett. 35, 105–108.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMontiel-Smith, S., Cervantes-Mejía, V., Dubois, J., Guénard, D., Guéritte, F. & Sandoval-Ramírez, J. (2002). Eur. J. Org. Chem. pp. 2260–2264.  Google Scholar
First citationRudolph, J., Sennhenn, P. C., Vlaar, C. P. & Sharpless, K. B. (1996). Angew. Chem. Int. Ed. 35, 2810–2813.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTinant, B., Declercq, J. P. & Cagnon, J. R. (1996). Bull. Soc. Chim. Belg. 105, 325–328.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 11| November 2012| Pages o3146-o3147
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds