organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Di­methyl-N-[1-(1H-pyrrol-2-yl)ethyl­­idene]aniline

aCollege of Chemistry and Chemical Engineering, Xi'an ShiYou University, Xi'an, Shaanxi 710065, People's Republic of China, and bCollege of Petroleum Engineering, Xi'an ShiYou University, Xi'an, Shaanxi 710065, People's Republic of China
*Correspondence e-mail: subiyun@xsyu.edu.cn

(Received 21 September 2012; accepted 27 September 2012; online 6 October 2012)

In the title compound, C14H16N2, the pyrrole and benzene rings form a dihedral angle of 72.37 (8)°. In the crystal, centrosymmetrically related mol­ecules are assembled into dimers by by pairs of N—H⋯N hydrogen bonds, generating rings of R22(10) graph-set motif. C—H⋯π inter­actions also occur.

Related literature

For general background to the imino­pyrrole unit, see: Britovsek et al. (2003[Britovsek, G. J. P., Gibson, V. C., Hoarau, O. D., Spitzmesser, S. K., White, A. J. P. & Williams, D. J. (2003). Inorg. Chem. 42, 3454-3465.]); Dawson et al. (2000[Dawson, D. M., Walker, D. A., Thornton-Pett, M. & Bochmann, M. (2000). J. Chem. Soc. Dalton Trans. pp. 459-466.]); Wu et al. (2003[Wu, Z.-K., Chen, Q.-Q., Xiong, S.-X., Xin, B., Zhao, Z.-W., Jiang, L.-J. & Ma, J.-S. (2003). Angew. Chem. Int. Ed. 42, 3271-3274.]). For the pyrrole diimine unit, see: Matsuo et al. (2001[Matsuo, Y., Mashima, K. & Tani, K. (2001). Organometallics, 20, 3510-3518.]) and for the pyrrole monoimine unit, see: He et al. (2009[He, L.-P., Liu, J.-Y., Pan, L., Wu, J.-Q., Xu, B.-C. & Li, Y.-S. (2009). J. Polym. Sci. Part A Polym. Chem. 47, 713-721.]); Su et al. (2009a[Su, B.-Y., Zhao, J.-S., Zhang, Q.-Z. & Qin, W.-L. (2009a). Synth. Commun. 39, 4429-4440.],b[Su, B.-Y., Zhao, J.-S., Zhang, Q.-Z. & Qin, W.-L. (2009b). Polym. Int. 58, 1051-1057.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2

  • Mr = 212.29

  • Monoclinic, P 21 /n

  • a = 12.5894 (17) Å

  • b = 7.3109 (10) Å

  • c = 14.8425 (19) Å

  • β = 113.118 (2)°

  • V = 1256.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.37 × 0.28 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.990

  • 6463 measured reflections

  • 2441 independent reflections

  • 1885 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.156

  • S = 0.96

  • 2441 reflections

  • 149 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.86 2.34 3.1354 (18) 155
C1—H1ACg1i 0.93 2.65 3.4298 (16) 142
Symmetry code: (i) -x, -y+2, -z.

Data collection: APEX2 (Bruker,2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker,2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Bis(imino)pyrrole is usually prepared from Schiff bases condensation of 2,5-diacetylpyrrole and the aromatic amine (Matsuo et al., 2001). Schiff bases containing pyrrole units have been extensively investigated because of their excellent and flexible coordination abilities (Wu et al., 2003). As the five-memberd ring substitute of pyridine six-memberd ring (Matsuo et al., 2001; He et al., 2009), pyrrole has been frequently introduced into the skeleton of the bis(imino)pyridine ligand to design new ligands and corresponding metal complexes as catalysts of olefin polymerizations (Britovsek et al., 2003; Dawson et al., 2000). As a part of our studies on mono(imino)pyrrole ligands (Su et al., 2009a,b), the crystal structure of the title compound is reported here.

The X-ray analysis of the title compound (Fig. 1) shows that the molecule is non-planar, with a dihedral angle of 72.37 (8)° formed by the pyrrole and benzene rings. The imino N—C bond length (1.288 (2) Å) indicates a CN double bond character. In the crystal (Fig. 2), a pair of classical N–H···N hydrogen bonds (Table 1) link centrosymmetrically related molecules into a dimer, generating a ring of R22(10) graph-set motif. The dimer is further enforced by C—H···π hydrogen interactions.

Related literature top

For general background to the iminopyrrole unit, see: Britovsek et al. (2003); Dawson et al. (2000); Wu et al. (2003). For the pyrrole diimine unit, see: Matsuo et al. (2001) and for the pyrrole monoimine unit, see: He et al. (2009); Su et al. (2009a,b).

Experimental top

The reagents 2-acetyl pyrrole (0.1528 g, 1.40 mmol) and 2,5-dimethylaniline (0.3393 g, 2.80 mmol) were placed in a 50-ml flask. A few drops of acetic acid was then added in, and the mixture was subjected to radiation in a 800 W microwave oven for 3 min and 2 min on a medium–heat setting. The reaction was monitored by TLC, and the crude product was purified by silica gel column chromatography (eluant: petroleum ether/ethyl acetate, 5:1 v/v). Plate-like colourless single crystals used in X-ray diffraction studies were grown from an ethanolic solution by slow evaporation of the solvent at room temperature; yield 72.79%, 0.2982 g. M.p. 396.8–398.4 K. The purity and the composition of the compound were checked and characterized by IR, 1H NMR, mass spectrum, as well as elemental analysis. IR (KBr): νC=N 1659 cm-1. 1H NMR (400 MHz, CDCl3): δ 7.12 (d, 1H, benzene ring aromatic H), δ 7.09 (d, 1H, benzene ring aromatic H), 6.88 (m, 1H, benzene ring aromatic H), 6.56 (d, 1H, pyrrole ring aromatic H), 6.37 (s, 1H, pyrrole ring aromatic H), 6.18 (d, 1H, pyrrole ring aromatic H), 2.18 (s, 6H, phenyl-CH3), 2.05 (s, 3H, –N=C(CH3)-). MS (EI): m/z 212 (M). Anal. Calcd. for C14H16N2: C, 79.21; H, 7.60; N, 13.20. Found: C, 79.72; H, 7.13; N, 12.84.

Refinement top

All H atoms were placed at calculated positions and refined as riding, with C—H = 0.93–0.96 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker,2008); cell refinement: SAINT (Bruker,2008); data reduction: SAINT (Bruker,2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the a axis, with hydrogen bond is shown as dashed lines.
2,5-Dimethyl-N-[1-(1H-pyrrol-2-yl)ethylidene]aniline top
Crystal data top
C14H16N2F(000) = 456
Mr = 212.29Dx = 1.122 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2093 reflections
a = 12.5894 (17) Åθ = 2.7–26.0°
b = 7.3109 (10) ŵ = 0.07 mm1
c = 14.8425 (19) ÅT = 296 K
β = 113.118 (2)°Block, colourless
V = 1256.4 (3) Å30.37 × 0.28 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2441 independent reflections
Radiation source: fine-focus sealed tube1885 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1513
Tmin = 0.976, Tmax = 0.990k = 88
6463 measured reflectionsl = 1815
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.1P)2 + 0.1684P]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
2441 reflectionsΔρmax = 0.22 e Å3
149 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.030 (5)
Crystal data top
C14H16N2V = 1256.4 (3) Å3
Mr = 212.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.5894 (17) ŵ = 0.07 mm1
b = 7.3109 (10) ÅT = 296 K
c = 14.8425 (19) Å0.37 × 0.28 × 0.15 mm
β = 113.118 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2441 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1885 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.990Rint = 0.021
6463 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 0.96Δρmax = 0.22 e Å3
2441 reflectionsΔρmin = 0.16 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.02765 (11)0.93936 (18)0.15136 (9)0.0509 (4)
H10.01110.96210.09030.061*
N20.16704 (11)0.92217 (17)0.04350 (9)0.0493 (4)
C10.01726 (14)0.9302 (2)0.22049 (12)0.0556 (5)
H1A0.09440.94810.20980.067*
C20.06832 (16)0.8908 (2)0.30727 (13)0.0606 (5)
H20.06080.87590.36670.073*
C30.17118 (15)0.8764 (2)0.29152 (12)0.0572 (5)
H30.24410.85100.33880.069*
C40.14446 (13)0.90679 (19)0.19355 (11)0.0447 (4)
C50.21617 (12)0.90262 (18)0.13711 (11)0.0429 (4)
C60.34366 (13)0.8754 (3)0.19343 (12)0.0584 (5)
H6A0.37900.84200.14910.088*
H6B0.35590.77990.24090.088*
H6C0.37740.98700.22630.088*
C70.23363 (12)0.9170 (2)0.01501 (11)0.0463 (4)
C80.29383 (12)1.0713 (2)0.02269 (11)0.0495 (4)
H80.29561.17320.01540.059*
C90.35159 (13)1.0782 (2)0.08547 (12)0.0519 (4)
C100.34733 (15)0.9243 (2)0.14132 (12)0.0593 (5)
H100.38520.92470.18400.071*
C110.28748 (15)0.7705 (2)0.13432 (12)0.0596 (5)
H110.28650.66890.17230.072*
C120.22837 (14)0.7620 (2)0.07228 (11)0.0519 (4)
C130.41634 (15)1.2478 (3)0.09201 (14)0.0697 (6)
H13A0.49611.23590.04890.105*
H13B0.38371.35250.07330.105*
H13C0.41041.26300.15810.105*
C140.16000 (19)0.5964 (3)0.06737 (16)0.0763 (6)
H14A0.15610.51200.11810.115*
H14B0.08330.63300.07620.115*
H14C0.19690.53860.00470.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0432 (7)0.0719 (9)0.0400 (7)0.0059 (6)0.0191 (6)0.0070 (6)
N20.0423 (7)0.0664 (9)0.0424 (7)0.0002 (6)0.0202 (6)0.0022 (6)
C10.0489 (9)0.0738 (11)0.0523 (10)0.0075 (8)0.0288 (8)0.0091 (8)
C20.0652 (10)0.0790 (12)0.0473 (9)0.0149 (9)0.0326 (8)0.0163 (8)
C30.0541 (9)0.0734 (11)0.0453 (9)0.0149 (8)0.0209 (7)0.0138 (8)
C40.0438 (8)0.0480 (8)0.0448 (8)0.0050 (6)0.0201 (7)0.0048 (6)
C50.0433 (8)0.0435 (8)0.0443 (8)0.0028 (6)0.0199 (7)0.0018 (6)
C60.0464 (9)0.0780 (11)0.0532 (10)0.0155 (8)0.0224 (8)0.0126 (8)
C70.0386 (7)0.0633 (10)0.0379 (8)0.0077 (6)0.0160 (6)0.0014 (6)
C80.0434 (8)0.0631 (10)0.0434 (9)0.0018 (7)0.0186 (7)0.0037 (7)
C90.0407 (8)0.0717 (11)0.0447 (9)0.0111 (7)0.0182 (7)0.0096 (7)
C100.0574 (10)0.0814 (13)0.0470 (9)0.0206 (9)0.0290 (8)0.0107 (8)
C110.0686 (11)0.0677 (11)0.0442 (9)0.0206 (9)0.0240 (8)0.0019 (7)
C120.0515 (9)0.0592 (10)0.0417 (8)0.0093 (7)0.0146 (7)0.0018 (7)
C130.0578 (10)0.0887 (14)0.0699 (12)0.0006 (9)0.0330 (9)0.0152 (10)
C140.0877 (14)0.0680 (13)0.0735 (14)0.0043 (10)0.0318 (12)0.0063 (9)
Geometric parameters (Å, º) top
N1—C11.3536 (19)C7—C121.403 (2)
N1—C41.3742 (19)C8—C91.390 (2)
N1—H10.8600C8—H80.9300
N2—C51.288 (2)C9—C101.386 (2)
N2—C71.4248 (18)C9—C131.508 (2)
C1—C21.346 (2)C10—C111.380 (2)
C1—H1A0.9300C10—H100.9300
C2—C31.407 (2)C11—C121.394 (2)
C2—H20.9300C11—H110.9300
C3—C41.376 (2)C12—C141.504 (2)
C3—H30.9300C13—H13A0.9600
C4—C51.453 (2)C13—H13B0.9600
C5—C61.504 (2)C13—H13C0.9600
C6—H6A0.9600C14—H14A0.9600
C6—H6B0.9600C14—H14B0.9600
C6—H6C0.9600C14—H14C0.9600
C7—C81.388 (2)
C1—N1—C4109.68 (13)C7—C8—C9122.06 (14)
C1—N1—H1125.2C7—C8—H8119.0
C4—N1—H1125.2C9—C8—H8119.0
C5—N2—C7120.42 (13)C10—C9—C8117.65 (15)
C2—C1—N1108.68 (14)C10—C9—C13121.59 (15)
C2—C1—H1A125.7C8—C9—C13120.75 (15)
N1—C1—H1A125.7C11—C10—C9120.68 (15)
C1—C2—C3107.46 (15)C11—C10—H10119.7
C1—C2—H2126.3C9—C10—H10119.7
C3—C2—H2126.3C10—C11—C12122.33 (15)
C4—C3—C2107.72 (15)C10—C11—H11118.8
C4—C3—H3126.1C12—C11—H11118.8
C2—C3—H3126.1C11—C12—C7117.00 (15)
N1—C4—C3106.46 (13)C11—C12—C14122.13 (15)
N1—C4—C5122.47 (13)C7—C12—C14120.86 (14)
C3—C4—C5131.04 (14)C9—C13—H13A109.5
N2—C5—C4118.40 (13)C9—C13—H13B109.5
N2—C5—C6124.76 (13)H13A—C13—H13B109.5
C4—C5—C6116.83 (13)C9—C13—H13C109.5
C5—C6—H6A109.5H13A—C13—H13C109.5
C5—C6—H6B109.5H13B—C13—H13C109.5
H6A—C6—H6B109.5C12—C14—H14A109.5
C5—C6—H6C109.5C12—C14—H14B109.5
H6A—C6—H6C109.5H14A—C14—H14B109.5
H6B—C6—H6C109.5C12—C14—H14C109.5
C8—C7—C12120.27 (14)H14A—C14—H14C109.5
C8—C7—N2119.97 (13)H14B—C14—H14C109.5
C12—C7—N2119.44 (13)
C4—N1—C1—C20.40 (19)C5—N2—C7—C12105.74 (16)
N1—C1—C2—C30.5 (2)C12—C7—C8—C90.7 (2)
C1—C2—C3—C40.4 (2)N2—C7—C8—C9174.23 (13)
C1—N1—C4—C30.13 (17)C7—C8—C9—C100.1 (2)
C1—N1—C4—C5178.29 (13)C7—C8—C9—C13179.93 (15)
C2—C3—C4—N10.17 (18)C8—C9—C10—C110.1 (2)
C2—C3—C4—C5177.76 (15)C13—C9—C10—C11179.93 (15)
C7—N2—C5—C4179.32 (12)C9—C10—C11—C120.5 (3)
C7—N2—C5—C60.7 (2)C10—C11—C12—C71.1 (2)
N1—C4—C5—N23.2 (2)C10—C11—C12—C14177.92 (16)
C3—C4—C5—N2174.48 (16)C8—C7—C12—C111.2 (2)
N1—C4—C5—C6176.84 (14)N2—C7—C12—C11174.73 (13)
C3—C4—C5—C65.5 (2)C8—C7—C12—C14177.81 (15)
C5—N2—C7—C880.71 (18)N2—C7—C12—C144.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.343.1354 (18)155
C1—H1A···Cg1i0.932.653.4298 (16)142
Symmetry code: (i) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC14H16N2
Mr212.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)12.5894 (17), 7.3109 (10), 14.8425 (19)
β (°) 113.118 (2)
V3)1256.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.37 × 0.28 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.976, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
6463, 2441, 1885
Rint0.021
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.156, 0.96
No. of reflections2441
No. of parameters149
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.16

Computer programs: APEX2 (Bruker,2008), SAINT (Bruker,2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.343.1354 (18)154.9
C1—H1A···Cg1i0.932.653.4298 (16)142
Symmetry code: (i) x, y+2, z.
 

Acknowledgements

This work was supported by the Natural Science Basic Research Plan of Shaanxi Province (No. 2009JQ2006) and the Scientific Research Plan Project of Shaanxi Education Department (Nos. 12 J K0620 and 2010 J K784).

References

First citationBritovsek, G. J. P., Gibson, V. C., Hoarau, O. D., Spitzmesser, S. K., White, A. J. P. & Williams, D. J. (2003). Inorg. Chem. 42, 3454–3465.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDawson, D. M., Walker, D. A., Thornton-Pett, M. & Bochmann, M. (2000). J. Chem. Soc. Dalton Trans. pp. 459–466.  Web of Science CSD CrossRef Google Scholar
First citationHe, L.-P., Liu, J.-Y., Pan, L., Wu, J.-Q., Xu, B.-C. & Li, Y.-S. (2009). J. Polym. Sci. Part A Polym. Chem. 47, 713–721.  Web of Science CrossRef CAS Google Scholar
First citationMatsuo, Y., Mashima, K. & Tani, K. (2001). Organometallics, 20, 3510–3518.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, B.-Y., Zhao, J.-S., Zhang, Q.-Z. & Qin, W.-L. (2009a). Synth. Commun. 39, 4429–4440.  Web of Science CrossRef CAS Google Scholar
First citationSu, B.-Y., Zhao, J.-S., Zhang, Q.-Z. & Qin, W.-L. (2009b). Polym. Int. 58, 1051–1057.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Z.-K., Chen, Q.-Q., Xiong, S.-X., Xin, B., Zhao, Z.-W., Jiang, L.-J. & Ma, J.-S. (2003). Angew. Chem. Int. Ed. 42, 3271–3274.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds