organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9,10-Di­bromo­phenanthrene

aDepartment of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
*Correspondence e-mail: kitamura@eng.u-hyogo.ac.jp

(Received 5 October 2012; accepted 10 October 2012; online 20 October 2012)

The mol­ecule of the title compound, C14H8Br2, is almost planar [maximum deviation 0.0355 (7) Å] and possesses crystallographic twofold (C2) symmetry. In the crystal, the mol­ecules form face-to-face slipped anti­parallel ππ stacking inter­actions along the c axis with an inter­planar distance 3.471 (7) Å, centroid–centroid distances of 3.617 (5)–3.803 (6) Å.

Related literature

For the first synthesis of the title compound, see: Schmidt & Ladner (1904[Schmidt, J. & Ladner, G. (1904). Chem. Ber. 37, 4402-4405.]). For the synthesis of 2,2′-bis­(dibromo­meth­yl)biphenyl, see: Bacon & Bankhead (1963[Bacon, R. G. R. & Bankhead, R. (1963). J. Chem. Soc. pp. 839-845.]). For a related structure, see: Yokota et al. (2012[Yokota, R., Kitamura, C. & Kawase, T. (2012). Acta Cryst. E68, o3100.]).

[Scheme 1]

Experimental

Crystal data
  • C14H8Br2

  • Mr = 336.02

  • Monoclinic, C 2/c

  • a = 18.2630 (15) Å

  • b = 9.0963 (8) Å

  • c = 7.3025 (6) Å

  • β = 114.499 (2)°

  • V = 1103.91 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.31 mm−1

  • T = 223 K

  • 0.5 × 0.1 × 0.08 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.160, Tmax = 0.558

  • 5151 measured reflections

  • 1257 independent reflections

  • 1011 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.116

  • S = 1.25

  • 1257 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −1.49 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1999[Rigaku (1999). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Phenanthrene is a polycylic aromatic hydrocarbon (PAH) as well as an important starting material toward fuctionalized π-conjugated molecules. The title compound, 9,10-dibromophenanthrene, was first prepared by Schmidt & Ladner (1904). However, the method involved relatively vigorous reaction conditions, and the title compound was not easily accessible. Therefore, the development of milder methods was pursued. Recently, we established a new method for the preparation of the title compound. Thus, treatment of 2,2'-bis(dibromomethyl)biphenyl (Bacon & Bankhead, 1963) with potassium t-butoxide yielded the title compound in a high yield. Securement of the title compound let to obtain single crystals suitable for X-ray analysis. We report herein the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The molecule possesses C2 symmetry, and half of the formula unit is crystallographically independent. The molecule is almost planar with the maximum deviation of 0.0355 (7) Å for Br1. The bonds lengths and angles are in good agreement with the standard values. As shown in Fig. 2, the molecules form face-to-face slipped antiparrallel π-π stacking along the direction of the c axis. The interplanar distance is 3.471 (7) Å and controid–centroid distances of 3.617 (5)-3.803 (6) Å. Recently, we have reported the crystal structure of 3,6-dibromophenanthrene (Yokota et al., 2012), whose feature was a herrinbone-like arrangement, indicating the difference in packing arrangement depending on the positions of bromo substituents.

Related literature top

For the first synthesis of the title compound, see: Schmidt & Ladner (1904). For the synthesis of 2,2'-bis(dibromomethyl)biphenyl, see: Bacon & Bankhead (1963). For a related structure, see: Yokota et al. (2012).

Experimental top

2,2'-Bis(dibromomethyl)biphenyl, as a starting material, was prepared according to the method described by Bacon & Bankhead (1963). To an ice-cooled solution of 2,2'-bis(dibromomethyl)biphenyl (300 mg, 0.60 mmol) in DMF (6 ml), pottasium t-butoxide (1.00 g, 9.05 mmol) was added. After stirring for 30 min, the reaction was quenched with 6M HCl. The resulting solid was extracted with toluene, washed with brine, and dried over Na2SO4. After evaporation, column chromatography on silica gel (hexane-CH2Cl2) produced the title compound (161 mg, 79%) as a pale yellow solid. Single crystals suitable for X-ray analysis were obtained by slow evaporation from a toluene solution.

Refinement top

All the aromatic H atoms were positioned geometrically and refined using a riding model with C—H = 0.94 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1999); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids. Symmetry code: (i) -x + 1, y, -z + 1/2.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis. Hydrogen atoms are omitted for clarity.
9,10-Dibromophenanthrene top
Crystal data top
C14H8Br2F(000) = 648
Mr = 336.02Dx = 2.022 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3170 reflections
a = 18.2630 (15) Åθ = 3.0–27.5°
b = 9.0963 (8) ŵ = 7.31 mm1
c = 7.3025 (6) ÅT = 223 K
β = 114.499 (2)°Needle, colourless
V = 1103.91 (16) Å30.5 × 0.1 × 0.08 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1257 independent reflections
Radiation source: fine-focus sealed x-ray tube1011 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.6°
ω scansh = 2323
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1111
Tmin = 0.160, Tmax = 0.558l = 99
5151 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0313P)2 + 8.7358P]
where P = (Fo2 + 2Fc2)/3
S = 1.25(Δ/σ)max < 0.001
1257 reflectionsΔρmax = 0.67 e Å3
73 parametersΔρmin = 1.49 e Å3
0 restraints
Crystal data top
C14H8Br2V = 1103.91 (16) Å3
Mr = 336.02Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.2630 (15) ŵ = 7.31 mm1
b = 9.0963 (8) ÅT = 223 K
c = 7.3025 (6) Å0.5 × 0.1 × 0.08 mm
β = 114.499 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1257 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
1011 reflections with I > 2σ(I)
Tmin = 0.160, Tmax = 0.558Rint = 0.028
5151 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.25Δρmax = 0.67 e Å3
1257 reflectionsΔρmin = 1.49 e Å3
73 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3372 (3)0.4275 (6)0.2001 (7)0.0341 (11)
H10.30990.33820.19030.041*
C20.2976 (3)0.5571 (7)0.1900 (8)0.0395 (12)
H20.24380.55640.17380.047*
C30.3375 (3)0.6900 (6)0.2037 (8)0.0388 (12)
H30.31030.77910.19620.047*
C40.4163 (3)0.6916 (5)0.2284 (7)0.0320 (10)
H40.44250.78220.23870.038*
C50.4586 (3)0.5595 (5)0.2384 (6)0.0248 (9)
C60.4168 (3)0.4248 (5)0.2245 (6)0.0257 (9)
C70.4612 (3)0.2907 (5)0.2373 (7)0.0268 (9)
Br10.40654 (4)0.11098 (6)0.22296 (10)0.0491 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.034 (2)0.039 (3)0.031 (2)0.005 (2)0.015 (2)0.001 (2)
C20.025 (2)0.058 (3)0.036 (3)0.011 (2)0.013 (2)0.001 (2)
C30.033 (3)0.042 (3)0.037 (3)0.014 (2)0.010 (2)0.001 (2)
C40.036 (2)0.027 (2)0.032 (2)0.0076 (19)0.012 (2)0.0008 (19)
C50.028 (2)0.025 (2)0.020 (2)0.0015 (17)0.0090 (18)0.0012 (16)
C60.027 (2)0.028 (2)0.020 (2)0.0002 (17)0.0083 (18)0.0004 (17)
C70.033 (2)0.021 (2)0.029 (2)0.0036 (17)0.015 (2)0.0008 (17)
Br10.0552 (4)0.0270 (3)0.0752 (5)0.0125 (2)0.0373 (3)0.0035 (3)
Geometric parameters (Å, º) top
C1—C21.369 (7)C4—C51.415 (6)
C1—C61.389 (6)C4—H40.94
C1—H10.94C5—C61.424 (6)
C2—C31.393 (8)C5—C5i1.449 (9)
C2—H20.94C6—C71.447 (6)
C3—C41.375 (7)C7—C7i1.349 (9)
C3—H30.94C7—Br11.896 (4)
C2—C1—C6121.5 (5)C5—C4—H4119.4
C2—C1—H1119.2C4—C5—C6117.5 (4)
C6—C1—H1119.2C4—C5—C5i121.8 (3)
C1—C2—C3119.7 (5)C6—C5—C5i120.7 (3)
C1—C2—H2120.2C1—C6—C5119.7 (4)
C3—C2—H2120.2C1—C6—C7123.5 (4)
C4—C3—C2120.4 (5)C5—C6—C7116.8 (4)
C4—C3—H3119.8C7i—C7—C6122.5 (2)
C2—C3—H3119.8C7i—C7—Br1120.42 (14)
C3—C4—C5121.2 (5)C6—C7—Br1117.1 (3)
C3—C4—H4119.4
C6—C1—C2—C30.2 (8)C5i—C5—C6—C1179.3 (5)
C1—C2—C3—C40.3 (8)C4—C5—C6—C7179.3 (4)
C2—C3—C4—C50.6 (7)C5i—C5—C6—C70.8 (7)
C3—C4—C5—C60.8 (7)C1—C6—C7—C7i179.4 (5)
C3—C4—C5—C5i179.2 (5)C5—C6—C7—C7i0.5 (8)
C2—C1—C6—C50.4 (7)C1—C6—C7—Br10.9 (6)
C2—C1—C6—C7179.6 (5)C5—C6—C7—Br1179.1 (3)
C4—C5—C6—C10.6 (6)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H8Br2
Mr336.02
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)18.2630 (15), 9.0963 (8), 7.3025 (6)
β (°) 114.499 (2)
V3)1103.91 (16)
Z4
Radiation typeMo Kα
µ (mm1)7.31
Crystal size (mm)0.5 × 0.1 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.160, 0.558
No. of measured, independent and
observed [I > 2σ(I)] reflections
5151, 1257, 1011
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.116, 1.25
No. of reflections1257
No. of parameters73
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 1.49

Computer programs: RAPID-AUTO (Rigaku, 1999), PROCESS-AUTO (Rigaku, 1998), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research from the JSPS and MEXT.

References

First citationBacon, R. G. R. & Bankhead, R. (1963). J. Chem. Soc. pp. 839–845.  CrossRef Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1999). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSchmidt, J. & Ladner, G. (1904). Chem. Ber. 37, 4402–4405.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYokota, R., Kitamura, C. & Kawase, T. (2012). Acta Cryst. E68, o3100.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds