organic compounds
(4-Fluorophenyl)[8-(4-fluorobenzoyl)-2,7-diphenoxynaphthalen-1-yl]methanone
aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology (TUAT), Koganei, Tokyo 184.8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp
In the title compound, C36H22F2O4, the aromatic rings of the benzoyl and phenoxy groups make dihedral angles of 72.07 (5), 73.24 (5), 62.49 (5) and 77.96 (6)° with the naphthalene ring system. In the crystal, C—H⋯O hydrogen bonds and C—H⋯π interactions are observed.
Related literature
For information on electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011, 2012). For the structures of closely related compounds, see: Watanabe et al. (2010); Sakamoto et al. (2012).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053681204408X/rz5018sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681204408X/rz5018Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681204408X/rz5018Isup3.cml
To a 10 ml flask, 1,8-bis(4-fluorobenzoyl)-2,7-dihydroxynaphthalene (1.0 mmol, 404 mg), benzeneboronic acid (4.0 mmol, 487 mg), Cu(OAc)2 (2.0 mmol, 363 mg), activated 4 Å molecular sieves (1.0 g), pyridine (8.0 mmol, 632 mg), methylene chloride (4.0 ml) were placed. The reaction mixture was stirred at room temperature for 48 h. After the reaction, the mixture was extracted with CHCl3. The combined extracts were washed with saturated NH4Claq and 2M aqueous HCl followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake. The crude product was purified by
(silica gel, hexane/CHCl3, 1:1 v/v) to give the title compound (isolated yield 46%). Furthermore, the isolated product was crystallized from methanol to give single crystal.1HNMR δ (300 MHz, CDCl3): 6.81(4H, d, J=7.5 Hz), 7.01(4H, t, J=8.5 Hz), 7.05(2H, t, J=7.5 Hz), 7.08(2H, d, J=8.9 Hz), 7.22(4H, t, J=7.5 Hz), 7.81(4H, dd, J=8.5, 5.5 Hz), 7.90(2H, d, J=8.9 Hz) p.p.m..
13CNMR δ (75 MHz, CDCl3): 115.18(d, 2JC—F=22.4 Hz), 117.21, 118.92, 123.92, 124.65, 127.85, 129.69, 130.65, 131.76(d, 3JC—F=10.1 Hz), 132.12, 134.87(d, 4JC—F=2.1 Hz), 153.73, 155.79, 165.64(d, 1JC—F=255.7 Hz), 194.64 p.p.m..
IR (KBr): 1666 (C=O), 1594, 1504, 1486 (Ar, naphthalene), 1262 (=C—O—C) cm-1.
HRMS (m/z): [M + H]+ calcd for C36H23F2O4, 557.1564 found, 557.1569.
m.p. 441.9–443.6 K
All H atoms were put in calculated positions and treated as riding on their parent atoms, with C—H = 0.95 Å, and Uiso(H) = 1.2 Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C36H22F2O4 | F(000) = 2304 |
Mr = 556.54 | Dx = 1.348 Mg m−3 |
Orthorhombic, Pbcn | Cu Kα radiation, λ = 1.54187 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 89526 reflections |
a = 22.3058 (4) Å | θ = 3.0–68.2° |
b = 14.6047 (3) Å | µ = 0.80 mm−1 |
c = 16.8302 (3) Å | T = 193 K |
V = 5482.76 (18) Å3 | Block, colorless |
Z = 8 | 0.50 × 0.30 × 0.10 mm |
Rigaku R-AXIS RAPID diffractometer | 5011 independent reflections |
Radiation source: rotating anode | 4671 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
Detector resolution: 10.000 pixels mm-1 | θmax = 68.2°, θmin = 3.6° |
ω scans | h = −26→26 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −17→17 |
Tmin = 0.691, Tmax = 0.925 | l = −19→19 |
96215 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.091 | w = 1/[σ2(Fo2) + (0.0435P)2 + 1.3362P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
5011 reflections | Δρmax = 0.17 e Å−3 |
380 parameters | Δρmin = −0.16 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00098 (6) |
C36H22F2O4 | V = 5482.76 (18) Å3 |
Mr = 556.54 | Z = 8 |
Orthorhombic, Pbcn | Cu Kα radiation |
a = 22.3058 (4) Å | µ = 0.80 mm−1 |
b = 14.6047 (3) Å | T = 193 K |
c = 16.8302 (3) Å | 0.50 × 0.30 × 0.10 mm |
Rigaku R-AXIS RAPID diffractometer | 5011 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 4671 reflections with I > 2σ(I) |
Tmin = 0.691, Tmax = 0.925 | Rint = 0.016 |
96215 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.17 e Å−3 |
5011 reflections | Δρmin = −0.16 e Å−3 |
380 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.42732 (5) | 0.97093 (6) | 0.71349 (6) | 0.0794 (3) | |
F2 | 0.21941 (5) | 0.25563 (7) | 0.76820 (6) | 0.0814 (3) | |
O1 | 0.51813 (4) | 0.65226 (6) | 0.53754 (5) | 0.0445 (2) | |
O2 | 0.22348 (4) | 0.46286 (6) | 0.46362 (5) | 0.0476 (2) | |
O3 | 0.40405 (4) | 0.54759 (6) | 0.64967 (5) | 0.0436 (2) | |
O4 | 0.28295 (4) | 0.62180 (6) | 0.58844 (6) | 0.0485 (2) | |
C1 | 0.42155 (5) | 0.59134 (7) | 0.51684 (7) | 0.0354 (3) | |
C2 | 0.47700 (5) | 0.61326 (8) | 0.48603 (7) | 0.0392 (3) | |
C3 | 0.49455 (6) | 0.58889 (8) | 0.40848 (8) | 0.0452 (3) | |
H3 | 0.5336 | 0.6032 | 0.3895 | 0.054* | |
C4 | 0.45474 (6) | 0.54468 (8) | 0.36146 (8) | 0.0450 (3) | |
H4 | 0.4662 | 0.5284 | 0.3090 | 0.054* | |
C5 | 0.39650 (6) | 0.52212 (7) | 0.38826 (7) | 0.0393 (3) | |
C6 | 0.35582 (6) | 0.47834 (8) | 0.33668 (7) | 0.0437 (3) | |
H6 | 0.3679 | 0.4649 | 0.2838 | 0.052* | |
C7 | 0.29964 (6) | 0.45476 (8) | 0.36058 (7) | 0.0430 (3) | |
H7 | 0.2729 | 0.4244 | 0.3254 | 0.052* | |
C8 | 0.28201 (5) | 0.47632 (8) | 0.43851 (7) | 0.0389 (3) | |
C9 | 0.31971 (5) | 0.51855 (7) | 0.49203 (7) | 0.0353 (3) | |
C10 | 0.37908 (5) | 0.54365 (7) | 0.46804 (7) | 0.0351 (3) | |
C11 | 0.41193 (5) | 0.61111 (8) | 0.60379 (7) | 0.0362 (3) | |
C12 | 0.41448 (5) | 0.70744 (8) | 0.63178 (7) | 0.0380 (3) | |
C13 | 0.40891 (6) | 0.78060 (9) | 0.57966 (8) | 0.0460 (3) | |
H13 | 0.4022 | 0.7693 | 0.5248 | 0.055* | |
C14 | 0.41308 (7) | 0.87001 (9) | 0.60688 (9) | 0.0549 (3) | |
H14 | 0.4093 | 0.9203 | 0.5714 | 0.066* | |
C15 | 0.42273 (7) | 0.88356 (9) | 0.68609 (9) | 0.0542 (3) | |
C16 | 0.42761 (7) | 0.81373 (10) | 0.73981 (8) | 0.0536 (3) | |
H16 | 0.4338 | 0.8260 | 0.7946 | 0.064* | |
C17 | 0.42336 (6) | 0.72486 (9) | 0.71226 (8) | 0.0458 (3) | |
H17 | 0.4265 | 0.6752 | 0.7485 | 0.055* | |
C18 | 0.29239 (5) | 0.54231 (8) | 0.57138 (7) | 0.0364 (3) | |
C19 | 0.27487 (5) | 0.46544 (8) | 0.62434 (7) | 0.0380 (3) | |
C20 | 0.23468 (6) | 0.48195 (10) | 0.68603 (7) | 0.0466 (3) | |
H20 | 0.2197 | 0.5420 | 0.6946 | 0.056* | |
C21 | 0.21664 (6) | 0.41109 (11) | 0.73482 (8) | 0.0576 (4) | |
H21 | 0.1895 | 0.4219 | 0.7773 | 0.069* | |
C22 | 0.23845 (7) | 0.32519 (11) | 0.72109 (8) | 0.0564 (4) | |
C23 | 0.27865 (7) | 0.30606 (10) | 0.66188 (9) | 0.0555 (4) | |
H23 | 0.2936 | 0.2457 | 0.6544 | 0.067* | |
C24 | 0.29691 (6) | 0.37735 (9) | 0.61327 (8) | 0.0469 (3) | |
H24 | 0.3248 | 0.3659 | 0.5718 | 0.056* | |
C25 | 0.55286 (5) | 0.72530 (8) | 0.51134 (8) | 0.0413 (3) | |
C26 | 0.53493 (6) | 0.78388 (9) | 0.45175 (9) | 0.0541 (3) | |
H26 | 0.4978 | 0.7747 | 0.4254 | 0.065* | |
C27 | 0.57176 (7) | 0.85648 (10) | 0.43073 (10) | 0.0621 (4) | |
H27 | 0.5600 | 0.8965 | 0.3890 | 0.075* | |
C28 | 0.62528 (7) | 0.87125 (10) | 0.46961 (10) | 0.0591 (4) | |
H28 | 0.6504 | 0.9209 | 0.4548 | 0.071* | |
C29 | 0.64195 (6) | 0.81319 (10) | 0.53019 (10) | 0.0562 (4) | |
H29 | 0.6784 | 0.8238 | 0.5578 | 0.067* | |
C30 | 0.60613 (6) | 0.73941 (9) | 0.55138 (8) | 0.0473 (3) | |
H30 | 0.6181 | 0.6992 | 0.5928 | 0.057* | |
C31 | 0.18912 (6) | 0.39816 (9) | 0.42294 (7) | 0.0441 (3) | |
C32 | 0.20515 (7) | 0.30699 (10) | 0.42398 (9) | 0.0570 (4) | |
H32 | 0.2393 | 0.2873 | 0.4530 | 0.068* | |
C33 | 0.17099 (8) | 0.24501 (11) | 0.38237 (11) | 0.0675 (4) | |
H33 | 0.1820 | 0.1822 | 0.3819 | 0.081* | |
C34 | 0.12115 (9) | 0.27327 (12) | 0.34162 (10) | 0.0717 (5) | |
H34 | 0.0982 | 0.2302 | 0.3123 | 0.086* | |
C35 | 0.10419 (8) | 0.36443 (12) | 0.34296 (10) | 0.0678 (4) | |
H35 | 0.0690 | 0.3835 | 0.3158 | 0.081* | |
C36 | 0.13857 (6) | 0.42802 (10) | 0.38408 (8) | 0.0524 (3) | |
H36 | 0.1274 | 0.4908 | 0.3853 | 0.063* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.1211 (8) | 0.0418 (5) | 0.0751 (6) | −0.0105 (5) | 0.0047 (6) | −0.0162 (4) |
F2 | 0.0877 (7) | 0.0902 (7) | 0.0662 (6) | −0.0393 (6) | −0.0098 (5) | 0.0362 (5) |
O1 | 0.0405 (4) | 0.0453 (5) | 0.0476 (5) | −0.0009 (4) | 0.0052 (4) | 0.0125 (4) |
O2 | 0.0421 (5) | 0.0541 (5) | 0.0467 (5) | 0.0010 (4) | 0.0022 (4) | −0.0123 (4) |
O3 | 0.0529 (5) | 0.0386 (4) | 0.0393 (4) | 0.0002 (4) | 0.0101 (4) | 0.0055 (4) |
O4 | 0.0537 (5) | 0.0363 (5) | 0.0555 (6) | 0.0036 (4) | 0.0137 (4) | −0.0079 (4) |
C1 | 0.0413 (6) | 0.0277 (5) | 0.0371 (6) | 0.0062 (4) | 0.0077 (5) | 0.0052 (4) |
C2 | 0.0423 (6) | 0.0309 (5) | 0.0444 (7) | 0.0045 (5) | 0.0068 (5) | 0.0083 (5) |
C3 | 0.0478 (7) | 0.0369 (6) | 0.0510 (7) | 0.0052 (5) | 0.0200 (6) | 0.0087 (5) |
C4 | 0.0601 (8) | 0.0349 (6) | 0.0399 (6) | 0.0075 (5) | 0.0196 (6) | 0.0039 (5) |
C5 | 0.0534 (7) | 0.0285 (5) | 0.0360 (6) | 0.0081 (5) | 0.0114 (5) | 0.0038 (4) |
C6 | 0.0649 (8) | 0.0339 (6) | 0.0322 (6) | 0.0077 (5) | 0.0092 (5) | 0.0010 (5) |
C7 | 0.0567 (7) | 0.0358 (6) | 0.0363 (6) | 0.0049 (5) | 0.0000 (5) | −0.0010 (5) |
C8 | 0.0446 (6) | 0.0335 (6) | 0.0387 (6) | 0.0052 (5) | 0.0038 (5) | 0.0010 (5) |
C9 | 0.0428 (6) | 0.0292 (5) | 0.0339 (6) | 0.0055 (4) | 0.0059 (5) | 0.0014 (4) |
C10 | 0.0447 (6) | 0.0257 (5) | 0.0350 (6) | 0.0063 (4) | 0.0080 (5) | 0.0042 (4) |
C11 | 0.0336 (5) | 0.0358 (6) | 0.0391 (6) | 0.0021 (4) | 0.0044 (5) | 0.0036 (5) |
C12 | 0.0359 (6) | 0.0379 (6) | 0.0402 (6) | 0.0000 (5) | 0.0042 (5) | −0.0003 (5) |
C13 | 0.0555 (7) | 0.0394 (6) | 0.0432 (7) | 0.0061 (5) | −0.0017 (6) | −0.0006 (5) |
C14 | 0.0733 (9) | 0.0370 (7) | 0.0545 (8) | 0.0054 (6) | −0.0004 (7) | 0.0020 (6) |
C15 | 0.0654 (9) | 0.0373 (7) | 0.0598 (9) | −0.0044 (6) | 0.0045 (7) | −0.0093 (6) |
C16 | 0.0637 (9) | 0.0530 (8) | 0.0442 (7) | −0.0099 (7) | 0.0016 (6) | −0.0088 (6) |
C17 | 0.0513 (7) | 0.0443 (7) | 0.0418 (7) | −0.0059 (6) | 0.0023 (5) | 0.0020 (5) |
C18 | 0.0348 (6) | 0.0359 (6) | 0.0386 (6) | 0.0016 (4) | 0.0039 (5) | −0.0057 (5) |
C19 | 0.0393 (6) | 0.0412 (6) | 0.0334 (6) | −0.0057 (5) | 0.0017 (5) | −0.0046 (5) |
C20 | 0.0448 (7) | 0.0563 (8) | 0.0388 (6) | −0.0088 (6) | 0.0051 (5) | −0.0083 (6) |
C21 | 0.0541 (8) | 0.0796 (11) | 0.0391 (7) | −0.0206 (7) | 0.0078 (6) | 0.0003 (7) |
C22 | 0.0619 (8) | 0.0653 (9) | 0.0419 (7) | −0.0281 (7) | −0.0080 (6) | 0.0135 (6) |
C23 | 0.0700 (9) | 0.0433 (7) | 0.0532 (8) | −0.0095 (6) | −0.0081 (7) | 0.0063 (6) |
C24 | 0.0571 (8) | 0.0416 (7) | 0.0420 (7) | −0.0025 (6) | 0.0040 (6) | −0.0008 (5) |
C25 | 0.0392 (6) | 0.0385 (6) | 0.0462 (7) | 0.0029 (5) | 0.0081 (5) | 0.0035 (5) |
C26 | 0.0507 (7) | 0.0469 (7) | 0.0646 (9) | −0.0070 (6) | −0.0085 (6) | 0.0148 (6) |
C27 | 0.0709 (10) | 0.0485 (8) | 0.0670 (10) | −0.0130 (7) | −0.0058 (8) | 0.0161 (7) |
C28 | 0.0567 (8) | 0.0461 (8) | 0.0746 (10) | −0.0121 (6) | 0.0074 (7) | 0.0004 (7) |
C29 | 0.0444 (7) | 0.0508 (8) | 0.0735 (9) | −0.0006 (6) | −0.0038 (7) | −0.0107 (7) |
C30 | 0.0461 (7) | 0.0451 (7) | 0.0506 (7) | 0.0074 (6) | −0.0005 (6) | −0.0016 (6) |
C31 | 0.0488 (7) | 0.0432 (6) | 0.0402 (6) | −0.0043 (5) | 0.0044 (5) | −0.0006 (5) |
C32 | 0.0629 (9) | 0.0462 (8) | 0.0618 (9) | 0.0035 (6) | 0.0119 (7) | 0.0038 (7) |
C33 | 0.0829 (11) | 0.0433 (8) | 0.0762 (11) | −0.0127 (8) | 0.0268 (9) | −0.0024 (7) |
C34 | 0.0889 (12) | 0.0621 (10) | 0.0641 (10) | −0.0392 (9) | 0.0133 (9) | −0.0073 (8) |
C35 | 0.0662 (10) | 0.0737 (11) | 0.0635 (10) | −0.0264 (8) | −0.0110 (8) | 0.0130 (8) |
C36 | 0.0544 (8) | 0.0462 (7) | 0.0566 (8) | −0.0089 (6) | −0.0034 (6) | 0.0088 (6) |
F1—C15 | 1.3607 (15) | C17—H17 | 0.9500 |
F2—C22 | 1.3569 (15) | C18—C19 | 1.4858 (17) |
O1—C2 | 1.3848 (15) | C19—C24 | 1.3899 (17) |
O1—C25 | 1.3902 (14) | C19—C20 | 1.3928 (17) |
O2—C8 | 1.3863 (14) | C20—C21 | 1.3810 (19) |
O2—C31 | 1.3959 (15) | C20—H20 | 0.9500 |
O3—C11 | 1.2198 (14) | C21—C22 | 1.365 (2) |
O4—C18 | 1.2144 (14) | C21—H21 | 0.9500 |
C1—C2 | 1.3788 (16) | C22—C23 | 1.369 (2) |
C1—C10 | 1.4343 (17) | C23—C24 | 1.3854 (19) |
C1—C11 | 1.5069 (16) | C23—H23 | 0.9500 |
C2—C3 | 1.4084 (17) | C24—H24 | 0.9500 |
C3—C4 | 1.3534 (19) | C25—C26 | 1.3776 (18) |
C3—H3 | 0.9500 | C25—C30 | 1.3815 (18) |
C4—C5 | 1.4141 (17) | C26—C27 | 1.3872 (19) |
C4—H4 | 0.9500 | C26—H26 | 0.9500 |
C5—C6 | 1.4092 (18) | C27—C28 | 1.378 (2) |
C5—C10 | 1.4326 (16) | C27—H27 | 0.9500 |
C6—C7 | 1.3605 (19) | C28—C29 | 1.377 (2) |
C6—H6 | 0.9500 | C28—H28 | 0.9500 |
C7—C8 | 1.4049 (17) | C29—C30 | 1.388 (2) |
C7—H7 | 0.9500 | C29—H29 | 0.9500 |
C8—C9 | 1.3781 (17) | C30—H30 | 0.9500 |
C9—C10 | 1.4322 (16) | C31—C36 | 1.3746 (19) |
C9—C18 | 1.5084 (15) | C31—C32 | 1.3788 (19) |
C11—C12 | 1.4846 (16) | C32—C33 | 1.375 (2) |
C12—C13 | 1.3881 (17) | C32—H32 | 0.9500 |
C12—C17 | 1.3924 (18) | C33—C34 | 1.370 (3) |
C13—C14 | 1.3869 (18) | C33—H33 | 0.9500 |
C13—H13 | 0.9500 | C34—C35 | 1.384 (3) |
C14—C15 | 1.365 (2) | C34—H34 | 0.9500 |
C14—H14 | 0.9500 | C35—C36 | 1.389 (2) |
C15—C16 | 1.367 (2) | C35—H35 | 0.9500 |
C16—C17 | 1.3815 (19) | C36—H36 | 0.9500 |
C16—H16 | 0.9500 | ||
C2—O1—C25 | 119.09 (9) | C19—C18—C9 | 117.62 (9) |
C8—O2—C31 | 117.61 (9) | C24—C19—C20 | 119.20 (12) |
C2—C1—C10 | 119.33 (10) | C24—C19—C18 | 121.73 (11) |
C2—C1—C11 | 116.65 (11) | C20—C19—C18 | 119.06 (11) |
C10—C1—C11 | 123.72 (10) | C21—C20—C19 | 120.07 (13) |
C1—C2—O1 | 117.02 (10) | C21—C20—H20 | 120.0 |
C1—C2—C3 | 122.63 (12) | C19—C20—H20 | 120.0 |
O1—C2—C3 | 120.00 (11) | C22—C21—C20 | 118.95 (13) |
C4—C3—C2 | 118.69 (11) | C22—C21—H21 | 120.5 |
C4—C3—H3 | 120.7 | C20—C21—H21 | 120.5 |
C2—C3—H3 | 120.7 | F2—C22—C21 | 118.52 (14) |
C3—C4—C5 | 121.83 (11) | F2—C22—C23 | 118.52 (15) |
C3—C4—H4 | 119.1 | C21—C22—C23 | 122.96 (13) |
C5—C4—H4 | 119.1 | C22—C23—C24 | 117.97 (14) |
C6—C5—C4 | 120.04 (11) | C22—C23—H23 | 121.0 |
C6—C5—C10 | 120.15 (11) | C24—C23—H23 | 121.0 |
C4—C5—C10 | 119.80 (12) | C23—C24—C19 | 120.82 (13) |
C7—C6—C5 | 121.72 (11) | C23—C24—H24 | 119.6 |
C7—C6—H6 | 119.1 | C19—C24—H24 | 119.6 |
C5—C6—H6 | 119.1 | C26—C25—C30 | 120.81 (12) |
C6—C7—C8 | 118.50 (12) | C26—C25—O1 | 123.07 (11) |
C6—C7—H7 | 120.8 | C30—C25—O1 | 116.04 (11) |
C8—C7—H7 | 120.8 | C25—C26—C27 | 119.24 (13) |
C9—C8—O2 | 116.03 (10) | C25—C26—H26 | 120.4 |
C9—C8—C7 | 122.67 (11) | C27—C26—H26 | 120.4 |
O2—C8—C7 | 121.09 (11) | C28—C27—C26 | 120.76 (14) |
C8—C9—C10 | 119.64 (10) | C28—C27—H27 | 119.6 |
C8—C9—C18 | 115.79 (10) | C26—C27—H27 | 119.6 |
C10—C9—C18 | 124.36 (10) | C29—C28—C27 | 119.27 (13) |
C9—C10—C5 | 117.31 (11) | C29—C28—H28 | 120.4 |
C9—C10—C1 | 124.99 (10) | C27—C28—H28 | 120.4 |
C5—C10—C1 | 117.66 (10) | C28—C29—C30 | 120.85 (13) |
O3—C11—C12 | 121.69 (11) | C28—C29—H29 | 119.6 |
O3—C11—C1 | 119.31 (10) | C30—C29—H29 | 119.6 |
C12—C11—C1 | 118.97 (10) | C25—C30—C29 | 119.05 (13) |
C13—C12—C17 | 119.14 (11) | C25—C30—H30 | 120.5 |
C13—C12—C11 | 121.70 (11) | C29—C30—H30 | 120.5 |
C17—C12—C11 | 119.16 (11) | C36—C31—C32 | 121.67 (13) |
C14—C13—C12 | 120.66 (12) | C36—C31—O2 | 117.97 (12) |
C14—C13—H13 | 119.7 | C32—C31—O2 | 120.34 (12) |
C12—C13—H13 | 119.7 | C33—C32—C31 | 119.06 (15) |
C15—C14—C13 | 118.02 (13) | C33—C32—H32 | 120.5 |
C15—C14—H14 | 121.0 | C31—C32—H32 | 120.5 |
C13—C14—H14 | 121.0 | C34—C33—C32 | 120.42 (15) |
F1—C15—C14 | 118.62 (13) | C34—C33—H33 | 119.8 |
F1—C15—C16 | 117.99 (13) | C32—C33—H33 | 119.8 |
C14—C15—C16 | 123.39 (13) | C33—C34—C35 | 120.23 (15) |
C15—C16—C17 | 118.26 (13) | C33—C34—H34 | 119.9 |
C15—C16—H16 | 120.9 | C35—C34—H34 | 119.9 |
C17—C16—H16 | 120.9 | C34—C35—C36 | 120.01 (16) |
C16—C17—C12 | 120.52 (12) | C34—C35—H35 | 120.0 |
C16—C17—H17 | 119.7 | C36—C35—H35 | 120.0 |
C12—C17—H17 | 119.7 | C31—C36—C35 | 118.55 (14) |
O4—C18—C19 | 122.34 (11) | C31—C36—H36 | 120.7 |
O4—C18—C9 | 119.96 (11) | C35—C36—H36 | 120.7 |
C10—C1—C2—O1 | −174.65 (9) | C13—C14—C15—F1 | 179.56 (13) |
C11—C1—C2—O1 | −0.77 (15) | C13—C14—C15—C16 | −1.0 (2) |
C10—C1—C2—C3 | −1.47 (17) | F1—C15—C16—C17 | −179.61 (13) |
C11—C1—C2—C3 | 172.42 (10) | C14—C15—C16—C17 | 0.9 (2) |
C25—O1—C2—C1 | −137.78 (11) | C15—C16—C17—C12 | 0.2 (2) |
C25—O1—C2—C3 | 48.85 (14) | C13—C12—C17—C16 | −1.10 (19) |
C1—C2—C3—C4 | 2.12 (18) | C11—C12—C17—C16 | 178.19 (12) |
O1—C2—C3—C4 | 175.10 (10) | C8—C9—C18—O4 | −109.42 (13) |
C2—C3—C4—C5 | −0.34 (18) | C10—C9—C18—O4 | 65.25 (16) |
C3—C4—C5—C6 | 178.22 (11) | C8—C9—C18—C19 | 67.27 (14) |
C3—C4—C5—C10 | −1.97 (17) | C10—C9—C18—C19 | −118.07 (12) |
C4—C5—C6—C7 | 179.33 (11) | O4—C18—C19—C24 | −165.81 (12) |
C10—C5—C6—C7 | −0.47 (17) | C9—C18—C19—C24 | 17.59 (17) |
C5—C6—C7—C8 | 1.01 (18) | O4—C18—C19—C20 | 15.05 (18) |
C31—O2—C8—C9 | −161.51 (11) | C9—C18—C19—C20 | −161.55 (11) |
C31—O2—C8—C7 | 23.62 (16) | C24—C19—C20—C21 | −0.71 (19) |
C6—C7—C8—C9 | −1.41 (18) | C18—C19—C20—C21 | 178.45 (11) |
C6—C7—C8—O2 | 173.11 (11) | C19—C20—C21—C22 | −0.5 (2) |
O2—C8—C9—C10 | −173.55 (10) | C20—C21—C22—F2 | −178.51 (12) |
C7—C8—C9—C10 | 1.23 (17) | C20—C21—C22—C23 | 1.4 (2) |
O2—C8—C9—C18 | 1.38 (15) | F2—C22—C23—C24 | 178.84 (12) |
C7—C8—C9—C18 | 176.16 (10) | C21—C22—C23—C24 | −1.1 (2) |
C8—C9—C10—C5 | −0.63 (15) | C22—C23—C24—C19 | −0.2 (2) |
C18—C9—C10—C5 | −175.11 (10) | C20—C19—C24—C23 | 1.0 (2) |
C8—C9—C10—C1 | 177.13 (10) | C18—C19—C24—C23 | −178.09 (12) |
C18—C9—C10—C1 | 2.65 (17) | C2—O1—C25—C26 | 26.01 (17) |
C6—C5—C10—C9 | 0.26 (15) | C2—O1—C25—C30 | −157.08 (11) |
C4—C5—C10—C9 | −179.54 (10) | C30—C25—C26—C27 | 1.6 (2) |
C6—C5—C10—C1 | −177.66 (10) | O1—C25—C26—C27 | 178.34 (13) |
C4—C5—C10—C1 | 2.53 (15) | C25—C26—C27—C28 | −1.1 (2) |
C2—C1—C10—C9 | −178.62 (10) | C26—C27—C28—C29 | −0.3 (2) |
C11—C1—C10—C9 | 7.96 (17) | C27—C28—C29—C30 | 1.2 (2) |
C2—C1—C10—C5 | −0.86 (15) | C26—C25—C30—C29 | −0.7 (2) |
C11—C1—C10—C5 | −174.29 (10) | O1—C25—C30—C29 | −177.67 (12) |
C2—C1—C11—O3 | −114.60 (12) | C28—C29—C30—C25 | −0.7 (2) |
C10—C1—C11—O3 | 58.99 (15) | C8—O2—C31—C36 | −117.82 (13) |
C2—C1—C11—C12 | 63.22 (14) | C8—O2—C31—C32 | 63.82 (16) |
C10—C1—C11—C12 | −123.19 (12) | C36—C31—C32—C33 | 2.7 (2) |
O3—C11—C12—C13 | −164.21 (12) | O2—C31—C32—C33 | −179.01 (12) |
C1—C11—C12—C13 | 18.03 (17) | C31—C32—C33—C34 | −1.1 (2) |
O3—C11—C12—C17 | 16.52 (17) | C32—C33—C34—C35 | −1.0 (2) |
C1—C11—C12—C17 | −161.25 (11) | C33—C34—C35—C36 | 1.6 (3) |
C17—C12—C13—C14 | 1.1 (2) | C32—C31—C36—C35 | −2.0 (2) |
C11—C12—C13—C14 | −178.23 (12) | O2—C31—C36—C35 | 179.61 (13) |
C12—C13—C14—C15 | 0.0 (2) | C34—C35—C36—C31 | −0.1 (2) |
Cg is the centroid of the C31–C36 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O3i | 0.95 | 2.40 | 3.3477 (15) | 172 |
C13—H13···Cgii | 0.95 | 2.87 | 3.6924 (15) | 145 |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) −x, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C36H22F2O4 |
Mr | 556.54 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 193 |
a, b, c (Å) | 22.3058 (4), 14.6047 (3), 16.8302 (3) |
V (Å3) | 5482.76 (18) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 0.80 |
Crystal size (mm) | 0.50 × 0.30 × 0.10 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.691, 0.925 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 96215, 5011, 4671 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.091, 1.06 |
No. of reflections | 5011 |
No. of parameters | 380 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.16 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), Il Milione (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).
Cg is the centroid of the C31–C36 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O3i | 0.95 | 2.40 | 3.3477 (15) | 172 |
C13—H13···Cgii | 0.95 | 2.87 | 3.6924 (15) | 145 |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) −x, y, −z+1/2. |
Acknowledgements
The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for his technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA. Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Okamoto, A., Hijikata, D., Sakai, N. & Yonezawa, N. (2012). Polym. J. In the press. Google Scholar
Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284. Web of Science CrossRef CAS Google Scholar
Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915. Web of Science CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sakamoto, R., Sasagawa, K., Hijikata, D., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2454. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto et al., 2011). As one of applications, the authors have integrated the resulting molecular unit to poly(ether ketone) backbone via nucleophilic aromatic substitution polycondensation (Okamoto et al., 2012). The poly(ether ketone)s composed of 1,8-diaroylenenaphthalene units show unique thermal properties and solubility for organic solvents. These curious features of the polymers can be explained on the basis of structural features of the 1,8-diaroylene naphthalene units. Under these circumstances, the authors have stimulated the X-ray crystal structural study of several 1,8-diaroylated naphthalene analogues exemplified by (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorophenyl)dimethanone (Watanabe et al., 2010) and 1,8-dibenzoylnaphthalene-2,7-diyl dibenzoate (Sakamoto et al., 2012). These molecules have essentially the same non-coplanar features. The aroyl groups at the 1,8-positions of the naphthalene rings in these molecules are twistedly bonded in an almost perpendicular fashion, but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. As a part of our continuous study on the molecular structures of this kind of homologous molecules, the X-ray crystal structure of title compound, 1,8-bis(4-fluorobenoyl)-2,7-diphenoxynaphthalene, is discussed in this article.
The molecular structure of the title compound is displayed in Fig. 1. Two benzoyl groups at 1,8-positions of the naphthalene ring are situated in opposite directions, anti orientation. The benzene rings of the benzoyl groups make dihedral angles of 72.07 (5) and 73.24 (5)° with the naphthalene ring, respectively. The dihedral angles between the phenyl rings of phenoxy groups and the naphthalene ring system are 62.49 (5) and 77.96 (6)°, respectively. The crystal packing is stabilized by an intermolecular C—H···O hydrogen bond between the oxygen atom (O3) of the carbonyl group of the adjacent molecule and one hydrogen atom (H6) on the naphthalene ring along the c axis (C6—H6···O3i = 2.40 Å; Fig. 2 and Table 1). The C—H···π interaction (C13—H13···Cgii = 2.87 Å; Fig. 3 and Table 1) also contributes to the stabilization of the aromatic ring alignments and the crystal structure.